‘— RMO0091
’l life.augmented Reference manual

STM32F0x1/STM32F0x2/STM32F0x8
advanced Arm®-based 32-bit MCUs

Introduction

This document is addressed to application developers. It provides complete information on
how to use the STM32F0x1/STM32F0x2/STM32F0x8 microcontroller memory and
peripherals.

It applies to the STM32F031x4/x6, STM32F051x4/x6/x8, STM32F071x8/xB,
STM32F091xB/xC, STM32F042x4/x6, STM32F072x8/xB, STM32F038x6, STM32F048x6,
STM32F058x8, STM32F078xB and STM32F098xC devices.

For the purpose of this manual, STM32F0x1/STM32F0x2/STM32F0x8 microcontrollers are
referred to as “STM32F0xx”.

The STM32F0xx is a family of microcontrollers with different memory sizes, packages and
peripherals.

For ordering information, mechanical and electrical device characteristics, refer to the
corresponding datasheet.

For information on the Arm® Cortex®-M0 core, refer to the Cortex®-MO0 technical reference
manual.

Related documents

e Cortex®-M0 technical reference manual, available from: http://infocenter.arm.com
e STMB32F0xx Cortex-MO programming manual (PM0215)
e STM32FO0xx datasheets available from STMicroelectronics website: www.st.com

May 2022 RMO0091 Rev 10 1/1017

www.st.com

http://www.st.com

Contents RMO0091
Contents

1 Documentation conventions i, 42

1.1 General information 42

1.2 List of abbreviations forregisters 42

1.3 GloSSary . . oo 43

14 Availability of peripherals 43

2 System and memory overview i i 44

2.1 System architecture 44

2.2 Memory organization e 46

221 Introduction 46

222 Memory map and register boundary addresses 47

2.3 Embedded SRAM 52

24 Flash memory overview i 53

25 Boot configuration 54

3 Embedded flashmemory i, 56

3.1 Flashmainfeatures i 56

3.2 Flash memory functional description 56

3.21 Flash memory organization 56

3.2.2 Flash program and erase operations 59

3.3 Memory protection e 66

3.3.1 Read protection 66

3.3.2 Write protection 68

3.3.3 Option byte write protection 68

3.4 Flashinterrupts 69

3.5 Flash register description 69

3.5.1 Flash access control register (FLASH_ACR) 69

3.5.2 Flash key register (FLASH_KEYR), 70

3.5.3 Flash option key register (FLASH_OPTKEYR) 70

3.54 Flash status register (FLASH_SR) 71

3.5.5 Flash control register (FLASH_CR) 71

3.5.6 Flash address register (FLASH_AR) 73

3.5.7 Flash Option byte register (FLASH OBR) 73

2/1017 RM0091 Rev 10 m

RMO0091 Contents
3.5.8 Write protection register (FLASH_WRPR) 74

3.5.9 Flashregistermap 75

4 Optionbytesc.o i i i it s e e eannns 76
4.1 Option byte description 77

411 User and read protectionoptionbyte 77

41.2 Userdataoptionbyte 78

41.3 Write protection optionbyte 79

414 Optionbytemap 80

5 Powercontrol (PWR) i i i ittt e e eennns 81
5.1 Power supplies e 81

51.1 Independent A/D and D/A converter supply and reference voltage 82

51.2 Independent I/O supply rail 82

51.3 Battery backupdomain 82

51.4 Voltage regulator e 83

52 Power supply SUPErViSOr 83

5.21 Power on reset (POR) / power downreset (PDR) 83

5.2.2 Programmable voltage detector (PVD) 84

5.3 Low-power modes it 85

5.3.1 Slowing down systemclocks i 86

5.3.2 Peripheral clock gating 87

5.3.3 Sleepmode 87

534 Stopmode e 88

535 Standby mode 90

5.3.6 Auto-wake-up from low-powermode 91

54 Power control registers 92

541 Power control register (PWR CR) 92

5.4.2 Power control/status register (PWR_CSR) 93

54.3 PWRregistermap ... 94

6 Resetand clockcontrol (RCC) iiiiiiiinnnnn. 95
6.1 Reset ... 95

6.1.1 Powerreset 95

6.1.2 Systemreset ... 95

6.1.3 RTC domainreset e 96

6.2 CloCks . . . 97

‘,_l RM0091 Rev 10 3/1017

Contents RM0091
6.2.1 HSE clock 101

6.2.2 HSIClock ... 102

6.2.3 HSI48 clock 103

6.2.4 P . 103

6.2.5 LSEClOCK . ..o 104

6.2.6 LSIclock 104

6.2.7 System clock (SYSCLK) selection 105

6.2.8 Clock security system (CSS)t 105

6.2.9 ADC CloCK . ..o 105

6.210 RTCCIOCK ... 106

6.2.11 Independent watchdogclock 106

6.2.12 Clock-out capability 106

6.2.13 Internal/external clock measurement with TIM14 107

6.3 Low-power modest 108
6.4 RCC registers 110
6.4.1 Clock control register (RCC_CR) i 110

6.4.2 Clock configuration register (RCC_CFGR) 111

6.4.3 Clock interrupt register RCC_CIR) 114

6.4.4 APB peripheral reset register 2 (RCC_APB2RSTR) 117

6.4.5 APB peripheral reset register 1 (RCC_APB1RSTR) 119

6.4.6 AHB peripheral clock enable register (RCC_AHBENR) 121

6.4.7 APB peripheral clock enable register 2 (RCC_APB2ENR) 123

6.4.8 APB peripheral clock enable register 1 (RCC_APB1ENR) 124

6.4.9 RTC domain control register (RCC_BDCR) 127

6.4.10 Control/status register (RCC_CSR) 128

6.4.11 AHB peripheral reset register RCC_AHBRSTR) 130

6.4.12 Clock configuration register 2 (RCC_CFGR2) 131

6.4.13 Clock configuration register 3 (RCC_CFGR3) 132

6.4.14 Clock control register 2(RCC_CR2) 133

6.4.15 RCCregistermap 136

7 Clock recovery system (CRS)ccciiiiiiiiinnn. 138
7.1 Introduction 138
7.2 CRSmainfeatures 138
7.3 CRS implementation 138
7.4 CRS functional description 139
4/1017 RM0091 Rev 10 m

RMO0091 Contents
7.4.1 CRS block diagram 139
7.4.2 Synchronization input 139
743 Frequency errormeasurement 140
744 Frequency error evaluation and automatic trimming 140
7.4.5 CRS initialization and configuration, 141
7.5 CRS low-powermodes 142
7.6 CRSinterrupts e 142
7.7 CRSregisterso 143
7.7.1 CRS control register (CRS_CR)t 143
7.7.2 CRS configuration register (CRS CFGR) 144
7.7.3 CRS interrupt and status register (CRS_ISR) 145
7.7.4 CRS interrupt flag clear register (CRS_ICR) 147
7.7.5 CRSregistermap 147
8 General-purpose l/Os (GPIO)ttt 149
8.1 Introduction 149
8.2 GPIOmainfeatures e 149
8.3 GPIO functional description 149
8.3.1 General-purpose I/0O (GPIO) 151
8.3.2 I/0O pin alternate function multiplexer and mapping 151
8.3.3 I/O portcontrol registers 152
8.3.4 /O portdataregisters 152
8.3.5 I/O data bitwise handling 152
8.3.6 GPIO locking mechanism 153
8.3.7 I/O alternate function input/output 153
8.3.8 External interrupt/wake-uplines 1563
8.3.9 Input configuration 154
8.3.10 Output configuration 154
8.3.11 Alternate function configuration 155
8.3.12 Analog configuration 156
8.3.13 Using the HSE or LSE oscillator pinsas GPIOs 157
8.3.14 Using the GPIO pins in the RTC supply domain 157
8.4 GPIO registers 158
8.4.1 GPIO port mode register (GPIOx_MODER)
(X=AtOF) 158
8.4.2 GPIO port output type register (GPIOx_OTYPER)
(X= A0 F) 158
‘,_l RM0091 Rev 10 5/1017

Contents RMO0091
843 GPIO port output speed register (GPIOx_OSPEEDR)
(X=AOF) 159
8.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(X=AT0F) . 159
8.4.5 GPIO port input data register (GPIOx_IDR)
(X=AT0F) . 160
8.4.6 GPIO port output data register (GPIOx_ODR)
(X= A0 F) 160
8.4.7 GPIO port bit set/reset register (GPIOx_BSRR)
(X=EAOF) 161
8.4.8 GPIO port configuration lock register (GPIOx_LCKR)
(X=AtOB) . 161
8.4.9 GPIO alternate function low register (GPIOx_AFRL)
(X=AIOF) 162
8.4.10 GPIO alternate function high register (GPIOx_AFRH)
(X=AT0F) . 163
8.4.11 GPIO port bit reset register (GPIOx_BRR) (x=AtoF) 163
8412 GPIOregistermap e 164
9 System configuration controller (SYSCFG) 166
9.1 SYSCFGregisters 166
9.1.1 SYSCFG configuration register 1 (SYSCFG_CFGR1) 166
9.1.2 SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICRT) .ot e 169
9.1.3 SYSCFG external interrupt configuration register 2
(SYSCFG_EXTICR2) ... e 170
9.1.4 SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICRS3) ...ttt 170
9.1.5 SYSCFG external interrupt configuration register 4
(SYSCFG_EXTICRA4) ... e 171
9.1.6 SYSCFG configuration register 2 (SYSCFG_CFGR2) 172
9.1.7 SYSCEFG interrupt line 0 status register (SYSCFG_ITLINEO) 172
9.1.8 SYSCEFG interrupt line 1 status register (SYSCFG_ITLINE1) 173
9.1.9 SYSCFG interrupt line 2 status register (SYSCFG_ITLINE2) 173
9.1.10 SYSCFG interrupt line 3 status register (SYSCFG_ITLINE3) 174
9.1.11 SYSCFG interrupt line 4 status register (SYSCFG_ITLINE4) 174
9.1.12 SYSCFG interrupt line 5 status register (SYSCFG_ITLINES) 174
9.1.13 SYSCFG interrupt line 6 status register (SYSCFG_ITLINEG) 175
9.1.14 SYSCFG interrupt line 7 status register (SYSCFG_ITLINE?7) 175
9.1.15 SYSCFG interrupt line 8 status register (SYSCFG_ITLINES) 176
9.1.16 SYSCFG interrupt line 9 status register (SYSCFG_ITLINE9) 176
6/1017 RMO0091 Rev 10 Kys

RMO0091 Contents
9.1.17 SYSCFG interrupt line 10 status register (SYSCFG_ITLINE10) 176

9.1.18 SYSCFG interrupt line 11 status register (SYSCFG_ITLINE11) 177

9.1.19 SYSCFG interrupt line 12 status register (SYSCFG_ITLINE12) 177

9.1.20 SYSCFG interrupt line 13 status register (SYSCFG_ITLINE13) 178

9.1.21 SYSCFG interrupt line 14 status register (SYSCFG_ITLINE14) 178

9.1.22 SYSCFG interrupt line 15 status register (SYSCFG_ITLINE15) 178

9.1.23 SYSCFG interrupt line 16 status register (SYSCFG_ITLINE16) 179

9.1.24 SYSCFG interrupt line 17 status register (SYSCFG_ITLINE17) 179

9.1.25 SYSCFG interrupt line 18 status register (SYSCFG_ITLINE18) 179

9.1.26 SYSCFG interrupt line 19 status register (SYSCFG_ITLINE19) 180

9.1.27 SYSCFG interrupt line 20 status register (SYSCFG_ITLINE20) 180

9.1.28 SYSCFG interrupt line 21 status register (SYSCFG_ITLINE21) 180

9.1.29 SYSCFG interrupt line 22 status register (SYSCFG_ITLINE22) 181

9.1.30 SYSCFG interrupt line 23 status register (SYSCFG_ITLINE23) 181

9.1.31 SYSCFG interrupt line 24 status register (SYSCFG_ITLINE24) 181

9.1.32 SYSCFG interrupt line 25 status register (SYSCFG_ITLINE25) 182

9.1.33 SYSCFG interrupt line 26 status register (SYSCFG_ITLINE26) 182

9.1.34 SYSCFG interrupt line 27 status register (SYSCFG_ITLINE27) 182

9.1.35 SYSCFG interrupt line 28 status register (SYSCFG_ITLINE28) 183

9.1.36 SYSCFG interrupt line 29 status register (SYSCFG_ITLINE29) 183

9.1.37 SYSCFG interrupt line 30 status register (SYSCFG_ITLINE30) 184

9.1.38 SYSCFGregistermaps, 185

10 Direct memory access controller (DMA) 188
10.1 Introduction 188
10.2 DMAmainfeatures 188
10.3 DMAimplementation 189
10.3.1 DMA1and DMAZ 189

10.3.2 DMArequestmapping 189

10.4 DMAfunctionaldescription, 194
10.4.1 DMAblockdiagram 194

10.4.2 DMAtransfers e 195

10.4.3 DMAarbitration 196

10.4.4 DMAchannels 197

10.4.5 DMA data width, alignment and endianness 200

10.4.6 DMAerrormanagement 202

10.5 DMAInterrupts e 202
"_l RM0091 Rev 10 711017

Contents RM0091
10.6 DMATregisters 202

10.6.1 DMA interrupt status register (DMA_ISR) 203

10.6.2 DMA interrupt flag clear register (DMA_IFCR) 205

10.6.3 DMA channel x configuration register (DMA_CCRX) 206

10.6.4 DMA channel x number of data to transfer register (DMA_CNDTRXx) . 209

10.6.5 DMA channel x peripheral address register (DMA_CPARX) 210

10.6.6 DMA channel x memory address register (DMA_CMARX) 210

10.6.7 DMA channel selection register (DMA_CSELR) 212

10.6.8 DMAregistermap 212

1" Interruptsandevents i i e 215
11.1 Nested vectored interrupt controller (NVIC) 215

1111 NVICmainfeatures i 215

11.1.2 SysTick calibration value register 215

11.1.3 Interrupt and exceptionvectors 215

11.2 Extended interrupts and events controller (EXTI) 217

11.21 Mainfeatures 217

11.2.2 Block diagram 218

11.23 Eventmanagement 218

11.2.4 Functional description 218

11.2.5 External and internal interrupt/event line mapping 220

11.3 EXTlregisters 221

11.3.1 Interrupt mask register (EXTI_IMR) 221

11.3.2 Event mask register (EXTI_EMR) 222

11.3.3 Rising trigger selection register (EXTI_RTSR) 222

11.3.4 Falling trigger selection register (EXTI_FTSR) 223

11.3.5 Software interrupt event register (EXTI_ SWIER) 223

11.3.6 Pending register (EXTI_PR) 224

11.3.7 EXTlregistermap i 225

12 Cyclic redundancy check calculation unit (CRC) 226
121 Introduction 226

122 CRCmainfeatures 226

12.3 CRCimplementation 226

124 CRCfunctionaldescription 227

12.4.1 CRCblock diagram i 227

8/1017 RM0091 Rev 10 m

RMO0091 Contents
1242 CRCinternalsignals 227
1243 CRCoperation e 227
125 CRCregisters 229
12.5.1 CRCdataregister (CRC_DR) 229
12.5.2 CRC independent data register (CRC_IDR) 229
12.5.3 CRC control register (CRC CR) 230
1254 CRCinitial value (CRC_INIT) 231
12.5.5 CRC polynomial (CRC_POL) 231
12.5.6 CRCregistermapo i 232
13 Analog-to-digital converter (ADC), 233
13.1 Introduction 233
13.2 ADCmainfeatures i 234
13.3 ADC functional description 235
13.3.1 ADCpinsandinternalsignals 235
13.3.2 Calibration (ADCAL)o 236
13.3.3 ADC on-off control (ADEN, ADDIS,ADRDY) 237
13.3.4 ADCclock (CKMODE) it i 239
13.3.5 Configuringthe ADC 240
13.3.6 Channel selection (CHSEL, SCANDIR) 240
13.3.7 Programmable samplingtime (SMP) 241
13.3.8 Single conversionmode (CONT=0)cc...... 241
13.3.9 Continuous conversion mode (CONT=1) 242
13.3.10 Starting conversions (ADSTART) 242
13311 TiMINGS . ..ot 243
13.3.12 Stopping an ongoing conversion (ADSTP) 244
13.4 Conversion on external trigger and trigger polarity (EXTSEL, EXTEN) . 244
13.4.1 Discontinuous mode (DISCEN), 245
13.4.2 Programmable resolution (RES) - Fast conversion mode 245
13.4.3 End of conversion, end of sampling phase (EOC, EOSMP flags) 246
13.4.4 End of conversion sequence (EOSflag) 246
13.4.5 Example timing diagrams (single/continuous modes
hardware/software triggers) 247
13.5 Datamanagement 249
13.5.1 Data register and data alignment (ADC_DR,ALIGN) 249
13.5.2 ADCoverrun (OVR,OVRMOD) 249
13.5.3 Managing a sequence of data converted without using the DMA 250
"_l RMO0091 Rev 10 9/1017

Contents

RM0091

14

10/1017

13.5.4 Managing converted data without using the DMA without overrun ... 250

13.5.5 Managing converted data usingthe DMA 250
13.6 Low-powerfeatures 252
13.6.1 Wait mode conversiont 252
13.6.2 Auto-off mode (AUTOFF) i 253
13.7 Analogwindowwatchdog 254
13.7.1 Description of the analog watchdog 254
13.7.2 ADC_AWD1_OUT output signal generation 255
13.7.3 Analog watchdog threshold control 257
13.8 Temperature sensor and internal reference voltage 258
13.9 Battery voltage monitoring 260
13.10 ADCinterrupts e 261
13.11 ADCregisters 262
13.11.1 ADC interrupt and status register (ADC_ISR) 262
13.11.2 ADC interrupt enable register (ADC_IER) 263
13.11.3 ADC control register (ADC CR) 265
13.11.4 ADC configuration register 1 (ADC_CFGR1) 267
13.11.5 ADC configuration register 2 (ADC_CFGR2) 271
13.11.6 ADC sampling time register (ADC_SMPR) 271
13.11.7 ADC watchdog threshold register (ADC_TR) 272
13.11.8 ADC channel selection register (ADC_CHSELR) 272
13.11.9 ADC dataregister (ADC DR) 273
13.11.10 ADC common configuration register (ADC_CCR) 274
13.12 ADCregistermapt 274
Digital-to-analog converter (DAC) i, 276
141 Introduction 276
142 DACmainfeatures 276
14.3 DACoutputbufferenable 277
144 DACchannelenable i 278
14.5 Single mode functional description 278
1451 DACdataformat 278
14.5.2 DAC channel conversionouiiiiiiinnnenan 278
14.5.3 DACoutputvoltage 279
14.5.4 DAC triggerselection i 280

RM0091 Rev 10 ‘Yl

RMO0091 Contents
14.6 Dual-mode functional description (STM32F07x and
STM32F09X deviCes) 280
146.1 DACdataformat 280
14.6.2 DAC channel conversionindualmode 281
14.6.3 Description of dual conversionmodes 281
14.6.4 DACoutputvoltage i 285
14.6.5 DAC triggerselection 286
14.7 Noise generation(STM32F07x and STM32F09x devices) 286
14.8 Triangle-wave generation (STM32F07x and STM32F09x
JEVICES) . . 287
14.9 DMATrequest e 288
1410 DAC registers 289
14.10.1 DAC control register (DAC_CR) 289
14.10.2 DAC software trigger register (DAC_SWTRIGR) 293
14.10.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHRI2RT) .ot 293
14.10.4 DAC channel1 12-bit left-aligned data holding register
(DAC_DHRI2LT) .ottt 294
14.10.5 DAC channel1 8-bit right-aligned data holding register
(DAC_DHRBRT) .. 294
14.10.6 DAC channel2 12-bit right-aligned data holding register
(DAC_DHR12R2) ... 294
14.10.7 DAC channel2 12-bit left-aligned data holding register
(DAC_DHR12L2) . ..o e 295
14.10.8 DAC channel2 8-bit right-aligned data holding register
(DAC_DHRB8BR2) ... 295
14.10.9 Dual DAC 12-bit right-aligned data holding register
(DAC_DHRI2RD) ..ottt e e 296
14.10.10 Dual DAC 12-bit left-aligned data holding register
(DAC_DHRI2LD) ..ottt 296
14.10.11 Dual DAC 8-bit right-aligned data holding register
(DAC_DHRB8BRD) ...ttt 296
14.10.12 DAC channel1 data output register (DAC_DOR1) 297
14.10.13 DAC channel2 data output register (DAC_DOR2) 297
14.10.14 DAC status register (DAC_SR) i 297
14.10.15 DAC register mapt 299
15 Comparator (COMP) ...ttt e s s nnns 301
15.1 Introduction 301
Kys RM0091 Rev 10 11/1017

Contents RMO0091
15.2 COMPmainfeatures 301
15.3 COMP functional description 302

15.3.1 COMPblockdiagram e 302
15.3.2 COMP pinsandinternal signals 302
15.3.3 COMPresetandclocks i, 303
15.3.4 Comparator LOCK mechanism 303
15.3.5 Hysteresis 303
15.3.6 Powermode e 304
154 COMPInterrupts 304
1565 COMPregisters e 304
15.5.1 COMP control and status register (COMP_CSR) 304
15.5.2 COMPregistermapot e 308

16 Touch sensing controller (TSC) 309
16.1 Introduction 309
16.2 TSCmainfeatures i 309
16.3 TSC functional description 310

16.3.1 TSCblock diagram 310
16.3.2 Surface charge transfer acquisition overview 310
16.3.3 Resetandclocks e 312
16.3.4 Charge transfer acquisition sequence 313
16.3.5 Spread spectrumfeature 314
16.3.6 Maxcount error e 314
16.3.7 Sampling capacitor I/O and channel I/O mode selection 315
16.3.8 Acquisitionmode 316
16.3.9 I/O hysteresis and analog switchcontrol 316
16.4 TSCIlow-poOwWermodesttt et e 317
16.5 TSCinterrupts 317
16.6 TSCregisters 318
16.6.1 TSC control register (TSC_CR) 318
16.6.2 TSC interrupt enable register (TSC_IER) 320
16.6.3 TSC interrupt clear register (TSC_ICR) 321
16.6.4 TSC interrupt status register (TSC ISR) 322
16.6.5 TSC /O hysteresis control register (TSC_IOHCR) 322
16.6.6 TSC I/O analog switch control register
(TSC_IOASCR) . ..o e e 323
12/1017 RM0091 Rev 10 "_l

RMO0091 Contents
16.6.7 TSC I/O sampling control register (TSC_IOSCR) 323

16.6.8 TSC I/O channel control register (TSC_IOCCR) 324

16.6.9 TSC I/O group control status register (TSC IOGCSR) 324

16.6.10 TSC I/O group x counter register (TSC IOGxCR) 325

16.6.11 TSCregistermap e e 326

17 Advanced-control timers (TIM1), 328
17.1 TIM71introduction 328
17.2 TIM1mainfeatures i 328
17.3 TIM1 functional description 330
17.3.1 Time-base unit 330

17.3.2 Countermodes e 332

17.3.3 Repetitioncounter 342

17.3.4 CloCK SOUICES it 344

17.3.5 Capture/compare channels 347

17.3.6 Inputcapturemode 350

17.3.7 PWMinputmode e 351

17.3.8 Forcedoutputmode 352

17.3.9 Outputcomparemode 352

17.310 PWMmMOde 353

17.3.11 Complementary outputs and dead-time insertion 357

17.3.12 Using the break function 359

17.3.13 Clearing the OCxREF signal on an externalevent 362

17.3.14 6-step PWMgeneration 364

17.3.15 One-pulsemode i 365
17.3.16 Encoderinterfacemode 366
17.3.17 Timerinput XOR function 369

17.3.18 Interfacingwith Hall sensors 369
17.3.19 TIMx and external trigger synchronization 371

17.3.20 Timer synchronization 374

17.3.21 Debugmode 374

174 TIMAregisters e e 375
17.4.1 TIM1 control register 1 (TIM1_CR1) 375

17.4.2 TIM1 control register 2 (TIM1_CR2) 376

17.4.3 TIM1 slave mode control register (TIM1_SMCR) 378

17.4.4 TIM1 DMA/interrupt enable register (TIM1_DIER) 381

17.4.5 TIM1 status register (TIM1_SR) 383

"_l RMO0091 Rev 10 13/1017

Contents RMO0091
17.4.6 TIM1 event generation register (TIM1_EGR) 384

17.4.7 TIM1 capture/compare mode register 1 (TIM1_CCMR1) 386

17.4.8 TIM1 capture/compare mode register 2 (TIM1_CCMR2) 389

17.4.9 TIM1 capture/compare enable register (TIM1_CCER) 391
17.410 TIM1 counter (TIM1_CNT) e 394

17.4.11 TIM1 prescaler (TIM1_PSC) 395
17.4.12 TIM1 auto-reload register (TIM1_ARR) 395
17.4.13 TIM1 repetition counter register (TIM1_RCR) 395

17.4.14 TIM1 capture/compare register 1 (TIM1_CCR1) 396
17.4.15 TIM1 capture/compare register 2 (TIM1_CCR2) 396
17.4.16 TIM1 capture/compare register 3 (TIM1_CCR3) 397
17.4.17 TIM1 capture/compare register 4 (TIM1_CCR4) 398
17.4.18 TIM1 break and dead-time register (TIM1_BDTR) 398
17.4.19 TIM1 DMA control register (TIM1_DCR) 400
17.4.20 TIM1 DMA address for full transfer (TIM1_DMAR) 401

17421 TIM1registermap s 402

18 General-purpose timers (TIM2and TIM3) 404
18.1 TIM2 and TIM3introduction 404
18.2 TIM2and TIM3mainfeatures 404
18.3 TIM2 and TIM3 functional description 405
18.3.1 Time-base unit 405

18.3.2 Countermodes 407

18.3.3 CloCK SOUICES i e e 418

18.3.4 Capture/comparechannels 421

18.3.5 Inputcapturemode 423

18.3.6 PWMinputmode 425

18.3.7 Forcedoutputmode 426

18.3.8 Outputcomparemode 426

18.3.9 PWMmMOde 427
18.3.10 One-pulsemode i 431

18.3.11 Clearing the OCXREF signal on an externalevent 432
18.3.12 Encoderinterfacemode 433
18.3.13 Timerinput XOR function 435

18.3.14 Timers and external trigger synchronization 436
18.3.15 Timer synchronization i 439

18.3.16 Debugmode 445
14/1017 RMO0091 Rev 10 ‘Y_I

RMO0091 Contents
18.4 TIM2and TIM3registers i, 446
18.4.1 TIM2 and TIM3 control register 1 (TIM2_CR1 and TIM3_CR1) 446
18.4.2 TIM2 and TIM3 control register 2 (TIM2_CR2 and TIM3_CR2) 448
18.4.3 TIM2 and TIM3 slave mode control register (TIM2_SMCR and
TIM3_SMCR) . . 449
18.4.4 TIM2 and TIM3 DMA/Interrupt enable register (TIM2_DIER and
TIM3_DIER) . . 451
18.4.5 TIM2 and TIM3 status register (TIM2_SR and TIM3_SR) 452
18.4.6 TIM2 and TIM3 event generation register (TIM2_EGR and
TIM3 EGR) ... e 455
18.4.7 TIM2 and TIM3 capture/compare mode register 1 (TIM2_CCMR1 and
TIM3_CCMR) ..ot e e 456
18.4.8 TIM2 and TIM3 capture/compare mode register 2 (TIM2_CCMR2 and
TIM3_CCMR2) . ..o e e 459
18.4.9 TIM2 and TIM3 capture/compare enable register (TIM2_CCER and
TIM3_CCER) ... e 460
18.4.10 TIM2 and TIM3 counter (TIM2_CNT and TIM3_CNT) 462
18.4.11 TIM2 and TIM3 prescaler (TIM2_PSC and TIM3_PSC) 462
18.4.12 TIM2 and TIM3 auto-reload register (TIM2_ARR and TIM3_ARR) ... 463
18.4.13 TIM2 and TIM3 capture/compare register 1 (TIM2_CCR1 and
TIM3 _CCRT) . e e 463
18.4.14 TIM2 and TIM3 capture/compare register 2 (TIM2_CCR2 and
TIM3_CCR2) .. e 464
18.4.15 TIM2 and TIM3 capture/compare register 3 (TIM2_CCR3 and
TIM3_CCR3) ..t e 464
18.4.16 TIM2 and TIM3 capture/compare register 4 (TIM2_CCR4 and
TIM3_CCR4) .. 466
18.4.17 TIM2 and TIM3 DMA control register (TIM2_DCR and TIM3_DCR) .. 466
18.4.18 TIM2 and TIM3 DMA address for full transfer (TIM2_DMAR and
TIM3 DMAR) . .o 467
18.4.19 TIM2and TIM3 registermap, 469
19 General-purpose timer (TIM14) i iiinnn. 471
19.1 TIM14 introduction 471
19.2 TIM14 mainfeatures i 471
19.3 TIM14 functional description 472
19.3.1 Time-baseunit 472
19.3.2 Counteroperation 473
19.3.3 ClOCK SOUICE . ..\ttt e e e 476
19.3.4 Capture/comparechannels 476
1S7] RM0091 Rev 10 15/1017

Contents RMO0091
19.3.5 Inputcapturemode 478

19.3.6 Forcedoutputmode 479

19.3.7 Outputcomparemode 479

19.3.8 PWMmMOde 481

19.3.9 Debugmode 482

19.4 TIM14 registers 482
19.4.1 TIM14 control register 1 (TIM14_CR1) 482

19.4.2 TIM14 interrupt enable register (TIM14_DIER) 483

19.4.3 TIM14 status register (TIM14_SR) 484

19.4.4 TIM14 event generation register (TIM14_EGR) 484

19.4.5 TIM14 capture/compare mode register 1 [alternate] (TIM14_CCMR1) 485

19.4.6 TIM14 capture/compare mode register 1 [alternate] (TIM14_CCMR1) 486

19.4.7 TIM14 capture/compare enable register (TIM14_CCER) 487

19.4.8 TIM14 counter (TIM14_CNT)t 488

19.49 TIM14 prescaler (TIM14_PSC) 489

19.4.10 TIM14 auto-reload register (TIM14_ARR) 489

19.4.11 TIM14 capture/compare register 1 (TIM14_CCR1) 489

19.4.12 TIM14 option register (TIM14_OR) 490

19.4.13 TIM14registermapt 490

20 General-purpose timers (TIM15/16/17) 492
20.1 TIM15/16/17 introduction 492
20.2 TIM15mainfeatures 492
20.3 TIM16 and TIM17 main features 494
20.4 TIM15/16/17 functional description 495
2041 Time-baseunit 495

20.4.2 Counteroperation 497

20.4.3 Repetitioncounter 501

20.4.4 ClIOCK SOUICES . . .ttt e e 502

20.4.5 Capture/comparechannels 504

2046 Inputcapturemode 507

20.4.7 PWMinputmode (only for TIM15) 508

204.8 Forcedoutputmode 509

20.4.9 Outputcomparemode 509
20410 PWMmMOdEt e 510

20.4.11 Complementary outputs and dead-time insertion 511
20.4.12 Usingthebreak function 514

16/1017 RM0091 Rev 10 m

RMO0091 Contents
20.4.13 One-pulsemode e 517
20.4.14 TIM15 external trigger synchronization 518
20.4.15 Timer synchronization (TIM15) 521
20416 Debugmode 521

20.5 TIMISregisters 522
20.5.1 TIM15 control register 1 (TIM15_ CR1) 522
20.5.2 TIM15 control register 2 (TIM15_CR2) 523
20.5.3 TIM15 slave mode control register (TIM15_SMCR) 524
20.5.4 TIM15 DMA/interrupt enable register (TIM15_DIER) 526
20.5.5 TIM15 status register (TIM15_SR) 527
20.5.6 TIM15 event generation register (TIM15_EGR) 529
20.5.7 TIM15 capture/compare mode register 1 [alternate] (TIM15_CCMR1) 530
20.5.8 TIM15 capture/compare mode register 1 [alternate] (TIM15_CCMR1) 531
20.5.9 TIM15 capture/compare enable register (TIM15_CCER) 533
20.5.10 TIM15 counter (TIM15_CNT) e 536
20.5.11 TIM15 prescaler (TIM15_PSC) 536
20.5.12 TIM15 auto-reload register (TIM15_ARR) 536
20.5.13 TIM15 repetition counter register (TIM15_ RCR) 537
20.5.14 TIM15 capture/compare register 1 (TIM15_CCR1) 537
20.5.15 TIM15 capture/compare register 2 (TIM15_CCR2) 537
20.5.16 TIM15 break and dead-time register (TIM15_BDTR) 538
20.5.17 TIM15 DMA control register (TIM15_ DCR) 540
20.5.18 TIM15 DMA address for full transfer (TIM15_DMAR) 541
20.5.19 TIM15registermap 541

20.6 TIMI1G/TIMA7 registers e 542
20.6.1 TIMx control register 1 (TIMx_CR1)(x=16t017) 542
20.6.2 TIMx control register 2 (TIMx_CR2)(x=16t017) 544
20.6.3 TIMx DMA/interrupt enable register (TIMx_DIER)(x =16t0 17) 544
20.6.4 TIMx status register (TIMx_SR)(x=16to17) 545
20.6.5 TIMx event generation register (TIMx_EGR)(x=16t017) 546
20.6.6 TIMx capture/compare mode register 1 [alternate]

(TIMX_CCMR1)(Xx =16t017) ...t 547
20.6.7 TIMx capture/compare mode register 1 [alternate]
(TIMX_CCMR1)(Xx=16t017) ... e 548
20.6.8 TIMx capture/compare enable register (TIMx_CCER)(x =16 to 17) .. 550
20.6.9 TIMx counter (TIMX_CNT)(x=16t017) 553
20.6.10 TIMx prescaler (TIMXx_PSC)(x=16t017) 553
"_l RMO0091 Rev 10 17/1017

Contents RMO0091
20.6.11 TIMx auto-reload register (TIMx_ARR)(x=16t017) 553

20.6.12 TIMx repetition counter register (TIMx_RCR)(x=16t017)......... 554

20.6.13 TIMx capture/compare register 1 (TIMx_CCR1)(x=16t017) 554

20.6.14 TIMx break and dead-time register (TIMx BDTR)(x=161t0 17) 554

20.6.15 TIMx DMA control register (TIMx_DCR)(x=16to17) 556

20.6.16 TIMx DMA address for full transfer (TIMx_DMAR)(x =16t0 17) 557

20.6.17 TIM16/TIM17 registermap 558

21 Basic timer (TIM6/TIM7) i iannnns 560
211 TIM6/TIM7 introduction 560

21.2 TIM6/TIM7 mainfeatures 560

21.3 TIM6/TIM7 functional description 561

2131 Time-basewunit 561

21.3.2 Countermodest 563

21.3.3 ClOCK SOUICE ... i e e e e 567

21.34 Debugmode 567

214 TIMO/TIM7 registers e 568

21.4.1 TIM6/TIM7 control register 1 (TIMx_CR1) 568

21.4.2 TIM6/TIM7 control register 2 (TIMx_CR2) 569

21.4.3 TIM6/TIM7 DMA/Interrupt enable register (TIMx_DIER) 569

2144 TIM6/TIM7 status register (TIMX_SR) 570

21.4.5 TIM6/TIM7 event generation register (TIMx EGR) 570

21.4.6 TIM6/TIM7 counter (TIMX_CNT) 570

2147 TIM6/TIM7 prescaler (TIMx_PSC) 571

21.4.8 TIM6/TIM7 auto-reload register (TIMx_ARR) 571

21.4.9 TIMG/TIM7 registermap 572

22 Infrared interface (IRTIM) 573
23 Independent watchdog (IWDG)cciiiiiiiiiirnnnnn 574
23.1 Introduction 574

23.2 IWDGmainfeatures 574

23.3 IWDG functional description 574

23.31 IWDGblockdiagram 574

23.3.2 Window oplion 575

23.3.3 Hardwarewatchdog 576

23.3.4 Registeraccess protection 576

18/1017 RM0091 Rev 10 m

RMO0091 Contents
23.35 Debugmode 576

234 IWDGregisters 577

23.41 IWDG key register IWDG_KR), 577

23.4.2 IWDG prescaler register IWDG_PR) 578

23.4.3 IWDG reload register (IWDG_RLR) 579

23.4.4 IWDG status register IWDG_SR) 580

2345 IWDG window register IWDG_WINR) 581

2346 IWDGregistermapt 582

24 System window watchdog (WWDG), 583
241 Introduction 583

242 WWDG mainfeatures 583

24.3 WWDG functional description 583

2431 WWDGblockdiagram 584

24.3.2 Enablingthewatchdog L. 584

24.3.3 Controllingthe down-counter 584

2434 How to program the watchdog timeout 584

2435 Debugmode 585

244 WWDGinterrupts 586

245 WWDGTregisters 586

2451 WWDG control register (WWDG_CR) 586

2452 WWDG configuration register (WWDG_CFR) 587

2453 WWDG status register (WWDG_SR) 587

2454 WWDGregistermap . ..ot e 588

25 Real-time clock (RTC)ttt et i nns 589
251 Introduction 589

252 RTCmainfeatures 590

253 RTCimplementation............ 590

25.4 RTC functional description 591

2541 RTCblockdiagram i, 591

25.4.2 GPIOs controlled bythe RTC 593

2543 Clockandprescalers, 595

2544 Realtimeclockandcalendar, 595

2545 Programmablealarm 596

2546 Periodicauto-wake-up 596

"_l RMO0091 Rev 10 19/1017

Contents RMO0091

25.4.7 RTC initialization and configuration 597

2548 Readingthecalendar......... 599

2549 Resettingthe RTC i, 600

25.4.10 RTC synchronization i, 600

25411 RTC reference clock detection 601

25.4.12 RTC smooth digital calibration 601

25413 Time-stamp function 603

25414 Tamperdetection 604

25.4.15 Calibrationclockoutput 606

25416 Alarmoutput 606

255 RTClow-powermodeso .. 606

25,6 RTCinterrupts 607

257 RTCregisters 607

2571 RTCtimeregister (RTC_TR) 607

25.7.2 RTCdateregister (RTC_DR)....... 608

25.7.3 RTCcontrolregister (RTC_ CR) 610

25.7.4 RTC initialization and status register (RTC_ISR) 613

25.7.5 RTC prescalerregister (RTC_PRER) 615

25.7.6 RTC wake-up timer register (RTC_WUTR) 616

25.7.7 RTC alarm Aregister RTC_ALRMAR) 617

25.7.8 RTC write protection register RTC_WPR) 618

25.7.9 RTC sub secondregister (RTC_SSR) 618

25.7.10 RTC shift control register (RTC_SHIFTR) 619

25.7.11 RTC timestamp time register (RTC_TSTR) 620

25.7.12 RTC timestamp date register (RTC_TSDR) 621

25.7.13 RTC time-stamp sub second register (RTC_TSSSR) 622

25.7.14 RTC calibration register RTC_CALR) 623
25.7.15 RTC tamper and alternate function configuration register

(RTC_TAFCR) ..ot e 624

25.7.16 RTC alarm A sub second register (RTC_ALRMASSR) 627

25.7.17 RTC backup registers (RTC_BKPxR) 628

25718 RTCregistermapt 628

26 Inter-integrated circuit (12C) interface 631

26.1 Introduction 631

26.2 12Cmainfeatures 631

26.3 12Cimplementation 632

20/1017 RM0091 Rev 10 "_l

RM0091

Contents

3

26.4

26.5
26.6
26.7

I12C functional description 632
26.4.1 12C1blockdiagram 633
26.4.2 12C2block diagram e 633
26.4.3 I12Cpinsandinternalsignals 634
26.4.4 12Cclockrequirements 635
26.45 Modeselection 635
26.4.6 12C initialization 636
26.4.7 Softwarereset 641
26.4.8 Datatransfer 642
2649 12Cslavemode 644
26.4.10 12Cmastermode 653
26.4.11 12C_TIMINGR register configuration examples 665
26.4.12 SMBus specificfeatures 666
26.4.13 SMBus initialization 669
26.4.14 SMBus: 12C_TIMEOUTR register configuration examples 671
26.4.15 SMBusslavemode 671
26.4.16 Wake-up from Stop mode onaddressmatch 678
26.4.17 Errorconditions 679
26.4.18 DMATrequests 681
26.4.19 Debugmode 682
12C loW-pOWer MOAES oottt 682
12C interrupts 683
12C registers 684
26.7.1 12C control register 1 (I2C_CR1) i 684
26.7.2 12C control register2 (I2C_CR2) i i 687
26.7.3 12C own address 1 register (I2C_OAR1) 689
26.7.4 12C own address 2 register (I2C_OAR2) 690
26.7.5 12C timing register (I2C_TIMINGR) 691
26.7.6 12C timeout register (I2C_TIMEOUTR) 692
26.7.7 12C interrupt and status register (I2C_ISR) 693
26.7.8 12C interrupt clear register (I2C_ICR) 695
26.7.9 I2CPECregister (I2C_PECR) i 696
26.7.10 12C receive dataregister (I2C_RXDR) 697
26.7.11 12C transmit data register (I2C_TXDR) 697
26.7.12 12Cregistermap 698

RM0091 Rev 10 211017

Contents RMO0091
27 Universal synchronous/asynchronous receiver

transmitter (USART/UART)ttt e e ee e 700

271 Introduction 700

27.2 USART mainfeatures i 700

27.3 USARTextendedfeatures 701

27.4 USART implementation 702

27.5 USART functional description 703

27.5.1 USART character description 705

2752 USARTtransmitter 707

2753 USARTIreceiver e 710

2754 USARTbaudrategeneration........... 716

27.5.5 Tolerance of the USART receiver to clock deviation 718

2756 USART autobaudratedetection 719

27.5.7 Multiprocessor communication using USART 720

27.5.8 Modbus communication using USART 722

27.5.9 USART paritycontrol 723

27.5.10 USART LIN (local interconnection network) mode 724

27.5.11 USART synchronousmode 726

27.5.12 USART Single-wire Half-duplex communication 729

27.513 USART Smartcardmodet 729

27.5.14 USART I'rDASIRENDECDblock 734

27.5.15 USART continuous communicationin DMAmode 736
27.5.16 RS232 hardware flow control and RS485 driver enable

using USART 738

27.5.17 Wake-up from Stop mode using USART 740

276 USART Iinlow-powermodes 742

277 USARTInterrupts 742

27.8 USARTregisters 744

27.8.1 USART control register 1 (USART_CR1) 744

27.8.2 USART control register 2 (USART_CR2) 747

27.8.3 USART control register 3 (USART_CR3) 751

27.8.4 USART baud rate register (USART BRR) 755

27.8.5 USART guard time and prescaler register (USART_GTPR) 755

27.8.6 USART receiver timeout register (USART_RTOR) 756

27.8.7 USART request register (USART_RQR) 757

27.8.8 USART interrupt and status register (USART_ISR) 758

22/1017 RM0091 Rev 10 m

RMO0091 Contents
27.8.9 USART interrupt flag clear register (USART_ICR) 763
27.8.10 USART receive data register (USART_RDR) 764
27.8.11 USART transmit data register (USART _TDR) 764
27.8.12 USARTregistermap i, 765

28

3

Serial peripheral interface / integrated interchip sound (SPI/I2S) .. 767

28.1
28.2
28.3
284
28.5

28.6
28.7

Introduction 767
SPImainfeatures e 767
12S main features 768
SPI/I2S implementation L 768
SPIfunctional description L 769
28.5.1 Generaldescription 769
28.5.2 Communications between one masterandone slave 770
28.5.3 Standard multi-slave communication 772
28.5.4 Multi-master communication 773
28.5.5 Slave select (NSS)pinmanagement 774
28.5.6 Communicationformats 775
28.5.7 Configurationof SPI 777
28.5.8 Procedure forenablingSPIl 778
28.5.9 Data transmission and reception procedures 778
28.5.10 SPlstatusflags i 788
28.5.11 SPlerrorflags e 789
28.5.12 NSSpulsemode 790
28513 TImode 790
28.5.14 CRCecalculation 791
SPlinterrupts 793
12S functional description 794
28.7.1 12Sgeneraldescription 794
28.7.2 12Sfullduplex 795
28.7.3 Supported audio protocols 796
28.7.4 Start-updescription 803
28.7.5 Clockgenerator 805
28.7.6 1PSMastermodei.iii 808
28.7.7 1PSSlave mode 809
28.7.8 12Sstatusflags 811
28.7.9 12Serrorflags 812

RM0091 Rev 10 23/1017

Contents RMO0091
28.7.10 DMATfeatures 813

28.8 12Sinterrupts 813
28.9 SPlandI2Sregisters 814
28.9.1 SPlcontrol register 1 (SPIX_CR1) 814

28.9.2 SPlcontrol register 2 (SPIX_CR2), 816

28.9.3 SPlstatusregister (SPIX_SR) i 818

28.9.4 SPldataregister (SPIX_DR) 820

28.9.5 SPI CRC polynomial register (SPIx CRCPR) 820

28.9.6 SPIRx CRC register (SPIXx_ RXCRCR) 820

28.9.7 SPITx CRC register (SPIX_TXCRCR) 821

28.9.8 SPIx_I2S configuration register (SPIx_I2SCFGR) 821

28.9.9 SPIx_I2S prescaler register (SPIX_I2SPR) 823
28.9.10 SPl/I2Sregistermap e 824

29 Controller area network (bxCAN) i, 825
291 Introduction 825
29.2 bxCANmainfeatures 825
29.3 DbxCAN general description i 825
29.31 CAN2O0Bactivecore i, 826

29.3.2 Control, status and configuration registers 826

29.3.3 TxmailboXes 826

29.3.4 Acceptancefilters 826

29.4 DbxCANoperatingmodes 827
29.41 Initialization mode 827

2942 Normalmode 828

29.4.3 Sleep mode (IOW-POWET) it 828

295 Testmode 829
2951 Silentmode 829

2052 Loopbackmode 830

29.5.3 Loop back combined with silentmode 830

29.6 Behaviorindebugmode 831
29.7 bxCAN functional description 831
29.7.1 Transmissionhandling 831

29.7.2 Time triggered communicationmode 833

290.7.3 Receptionhandling 833

290.7.4 Identifierfiltering 834

24/1017 RM0091 Rev 10 m

RM0091 Contents
20.7.5 Message storage 838

29.7.6 Errormanagement 839

29.7.7 Bittiming 840

29.8 bxCANinterrupts 843

29.9 CANregisters 844

29.9.1 Reqgisteraccess protection 844

29.9.2 CANcontrol and statusreqgisters 844

29.9.3 CANmailboxregisters i 855

29.94 CANfilterregisters 860

29.95 bxCANregistermap 864

30 Universal serial bus full-speed device interface (USB) 868
30.1 Introduction 868

30.2 USBmainfeatures 868

30.3 USBimplementation............. 868

30.4 USB functional description 870

30.4.1 Descriptionof USB blocks 871

30.5 Programming considerations i 872

30.5.1 Generic USB device programmingc.ouuiueeannn... 872

30.5.2 Systemandpower-onreset......... 873

30.5.3 Double-buffered endpoints 878

30.5.4 Isochronous transfers i 880

30.5.5 Suspend/Resumeevents, 881

30.6 USBand USB SRAMregisters 884

30.6.1 Commonregisters 884

30.6.2 Bufferdescriptortable L, 897

30.6.3 USBregistermap 900

31 HDMI-CEC controller (CEC)¢iiiiiiiiiiinrrnnnnnn 902
31.1 Introduction 902

31.2 HDMI-CEC controller main features 902

31.3 HDMI-CEC functional description 903

31.3.1 HDMI-CEC PiN . . oottt 903

31.3.2 HDMI-CEC blockdiagram 903

31.3.3 Messagedescription 903

31.34 Bittiming 904

"_l RMO0091 Rev 10 25/1017

Contents RM0091
31.4 Arbitration 905
3141 SFToptionbit 906

315 Errorhandling e 907
31.5.1 Bitermor 907

31.5.2 MeSSage EITOrt 907

31.5.3 Bitrisingerror(BRE) 907

31.5.4 Shortbitperioderror (SBPE), 908

31.5.,5 Longbitperioderror (LBPE) 908

31.5.6 Transmission error detection (TXERR) 909

31.6 HDMI-CEC interrupts 911
31.7 HDMI-CECregisters 912
31.7.1 CEC control register (CEC_CR) 912

31.7.2 CEC configuration register (CEC_CFGR) 913

31.7.3 CEC Tx dataregister (CEC_TXDR) 915

31.74 CEC Rxdataregister (CEC_RXDR) 915

31.7.5 CEC interrupt and status register (CEC_ISR) 915

31.7.6 CEC interrupt enable register (CEC IER) 917

31.7.7 HDMI-CECregistermap, 919

32 Debug support (DBG)o 920
321 OVEIVIBW . ot 920
32.2 Reference Arm documentation 921
32.3 Pinoutanddebugportpins 921
3231 SWD port pins e 922

32.3.2 SW-DPpinassignment 922

32.3.3 Internal pull-up and pull-downon SWDpins 922

32.4 ID codes and lockingmechanism 922
3241 MCUdevicelDcodeot 923

32.5 SWD pPOrt ..o 924
32.5.1 SWD protocolintroduction 924

32.5.2 SWD protocol sequeNCettt 924

32.5.3 SW-DP state machine (reset, idle states, IDcode) 925

3254 DPandAPread/writeaccessesc. .. 925

32.5.5 SW-DPregisters 927

32.5.6 SW-APregisters 928

326 Coredebug 928
26/1017 RM0091 Rev 10 m

RM0091 Contents
327 BPU (BreakPointUnit).............., 929

32.7.1 BPUfunctionality 929

32.8 DWT (Data Watchpoint) i 929

32.8.1 DWTfunctionality 929

32.8.2 DWT Program Counter Sample Register 929

329 MCU debug component (DBGMCU) 929

32.9.1 Debug support for low-powermodes 930

32.9.2 Debug support for timers, watchdog and PC .. 930

32.9.3 Debug MCU configuration register (DBGMCU_CR) 931

32.94 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ) 932

32.9.5 Debug MCU APB2 freeze register (DBGMCU_APB2_FZ) 934

3296 DBGregistermap 934

33 Device electronic signature 936
33.1 Unique device ID register (96 bits) 936

33.2 Flash memory size dataregister 937
Appendix A Codeexamples.oiiiiiiiiinnnnnnnrrrrrennnnnns 938
A1 Introduction 938

A2 Flash operation code examples 938

A.2.1 Flash memory unlocking sequence 938

A.2.2 Main Flash programming sequence 938

A.2.3 Page erase sequence. 939

A24 Mass erase SEQUENCE.ottt 940

A.2.5 Option byte unlockingsequence. 940

A.2.6 Option byte programming sequence. 941

A2.7 Option byte erasingsequence 941

A3 Clockcontroller. 942

A.3.1 HSE start sequence code example 942

A.3.2 PLL configuration modification code example 943

A.3.3 MCO selectioncode example. 943

A3.4 Clock measurement configuration with TIM14 code example 944

A4 GPIO . . 945

A.4A1 Lock sequencecodeexample 945

A4.2 Alternate function selection sequence code example. 945

A4.3 Analog GPIO configurationcode example 946

"_l RMO0091 Rev 10 27/1017

Contents RMO0091
A5 DM A 946
A.5.1 DMA channel configuration sequence code example. 946

A.6 Interruptsand event 947
A.6.1 NVIC initialization example L 947

A.6.2 External interrupt selection code example 947

A7 AD C. . 948
A.7A1 ADC calibrationcodeexample 948

A7.2 ADC enable sequence codeexample 948

A.7.3 ADC disable sequence codeexample 949

A7.4 ADC clock selectioncode example 949

A.7.5 Single conversion sequence code example - Software trigger. 950

A.7.6 Continuous conversion sequence code example - Software trigger. . . 950

A7.7 Single conversion sequence code example - Hardware trigger. 951

A.7.8 Continuous conversion sequence code example - Hardware trigger . . 951

A.7.9 DMA one shot mode sequence codeexample. 952

A.7.10 DMA circular mode sequence codeexample 952

A.7.11 Wait mode sequence code example. 952

A.7.12 Auto Off and no wait mode sequence code example 953

A.7.13 Auto Off and wait mode sequence code example 953

A.7.14 Analog watchdogcodeexample. 953

A.7.15 Temperature configuration code example. 954

A.7.16 Temperature computation codeexample 954

A.8 DAC. . 954
A.8.1 Independent trigger without wave generation code example 954

A.8.2 Independent trigger with single LFSR generation code example.. 955

A.8.3 Independent trigger with different LFSR generation code example . . . 955

A.8.4 Independent trigger with single triangle generation code example. . . . 956

A.8.5 Independent trigger with different triangle generation code example . . 956

A.8.6 Simultaneous software start code example 956

A.8.7 Simultaneous trigger without wave generation code example 957

A.8.8 Simultaneous trigger with single LFSR generation code example 957

A.8.9 Simultaneous trigger with different LFSR generation code example . . 957

A.8.10 Simultaneous trigger with single triangle generation code example. . . 958

A.8.11 Simultaneous trigger with different triangle generation code example . 958

A.8.12 DMAinitializationcodeexample. 959

A TIMEIS . . 960

28/1017

RM0091 Rev 10 ‘Yl

RM0091

Contents

3

A10

AN

A12

A13

A14

A.9.1 Upcounter on TI2 rising edge code example 960
A.9.2 Up counter on each 2 ETR rising edges code example 961
A.9.3 Input capture configuration code example 961
A.9.4 Input capture data management code example 962
A.9.5 PWM input configuration code example 963
A.9.6 PWM input with DMA configuration code example. 963
A.9.7 Output compare configuration code example. 964
A.9.8 Edge-aligned PWM configuration example. 964
A.9.9 Center-aligned PWM configurationexample 965
A.9.10 ETR configuration to clear OCXREF code example 966
A.9.11 Encoderinterface codeexample 966
A.9.12 Resetmodecodeexample............... 967
A.9.13 Gatedmodecodeexample..... 967
A.9.14 Triggermode codeexample............. 968
A.9.15 External clock mode 2 + trigger mode code example. 968
A.9.16 One-Pulse modecodeexample........... 969
A.9.17 Timer prescaling another timercodeexample 969
A.9.18 Timer enabling another timer code example. 970
A.9.19 Master and slave synchronization code example. 971
A.9.20 Two timers synchronized by an external trigger code example 972
A.9.21 DMAburstfeaturecodeexample................ 973
IRTIMcodeexample. i e 974
A.10.1 TIM16 and TIM17 configuration code example. 974
A.10.2 IRQHandler forIRTIMcodeexample 975
bxCAN codeexample 976
A.11.1 bxCAN initialization mode codeexample 976
A.11.2 bxCAN transmitcodeexample., 976
A.11.3 bxCANreceivecodeexample, 977
DBGcode example. 977
A.121 DBGreaddeviceIDcodeexample 977
A.12.2 DBG debug in Low-power mode code example 977
HDMI-CEC code example. it 977
A.13.1 HDMI-CEC configure CEC codeexample 977
A.13.2 HDMI-CEC transmission with interrupt enabled code example 978
A.13.3 HDMI-CEC interrupt management code example 978
[2Ccodeexample. i e 978

RM0091 Rev 10 29/1017

Contents RMO0091
A.14.1 12C configured in master mode to receive code example. 978
A.14.2 12C configured in master mode to transmit code example 979
A.14.3 12C configured in slave mode codeexample 979
A.14.4 12C master transmittercode example. 979
A.14.5 12C masterreceivercodeexample. 979
A.14.6 12C slave transmittercode example 980
A.14.7 12C slave receivercode example 980

30/1017

A15

A.16

A7

A.18

A19

A.14.8 12C configured in master mode to transmit with DMA code example . . 980

A.14.9 12C configured in slave mode to receive with DMA code example. . .. 981
IWDG code example.t 981
A.15.1 IWDG configuration codeexample. 981
A.15.2 IWDG configuration with window code example. 982
RTCcodeexample i i 982
A.16.1 RTC calendar configuration code example. 982
A.16.2 RTC alarm configuration code example 983
A.16.3 RTC WUT configuration code example 983
A.16.4 RTCreadcalendarcodeexample 983
A.16.5 RTC calibrationcodeexample 984
A.16.6 RTC tamper and time stamp configuration code example 984
A.16.7 RTC tamper and time stamp code example 985
A.16.8 RTC clock outputcodeexample. 985
SPlcodeexample. 985
A.17.1 SPI master configuration codeexample. 985
A.17.2 SPI slave configuration code example 986
A.17.3 SPI full duplex communication code example 986
A.17.4 SPlinterruptcodeexample 986
A.17.5 SPI master configuration with DMA code example. 986
A.17.6 SPI slave configuration with DMA code example 987
TSCcodeexamplettt 987
A.18.1 TSC configurationcodeexample 987
A.18.2 TSCinterruptcodeexample. 987
USART code example.o e 988
A.19.1 USART transmitter configuration code example.................. 988
A.19.2 USART transmit byte code example. 988
A.19.3 USART transfer complete codeexample 988
A.19.4 USART receiver configuration code example. 988

RM0091 Rev 10 ‘Yl

RMO0091 Contents
A.19.5 USART receive byte codeexample 988

A.19.6 USARTLINmodecodeexample 989

A.19.7 USART synchronous mode code example. 989

A.19.8 USART single-wire half-duplex code example 990

A.19.9 USART smartcard mode codeexample 990

A.19.10 USART IrDAmode codeexampleo .. 991

A.19.11 USARTDMAcodeexample 991

A.19.12 USART hardware flow control code example.................... 992

A20 WWDGcodeexample. 992

A.20.1 WWDG configuration codeexample. 992

Important securitynotice i e, 993
Revision history i i i ittt eaaneannnnns 994
1S7] RM0091 Rev 10 31/1017

List of tables RMO0091

List of tables

Table 1.
Table 2.
Table 3.
Table 4.

Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.

32/1017

STM32FO0xx peripheral register boundary addresses 47
STM32F0xx memory boundary addresses i, 51
BoOt MOdES e 54
Flash memory organization (STM32F03x, STM32F04x and

STM32F05X AEVICES). .« . v vttt e 57
Flash memory organization (STM32F07x, STM32F09x devices). 58
Flash memory read protectionstatus 66
Access status versus protection level and executionmodes 67
Flash interruptrequest 69
Flash interface - Register map andresetvalues 75
Option byte format 76
Option byte organization. 76
Option byte map and ST productionvalues 80
Low-power mode SUMMAIYttt et et e e e e e 86
SlEEP-NOW. . . oot e 88
Sleep-0N-EXit.o 88
StOP MOAE e 89
Standby mode. 90
PWR registermapandresetvalues. 94
RCCregistermapandresetvalues 136
CRS features 138
Effect of low-power modeson CRS 142
Interrupt control bits 142
CRSregistermapandresetvalues 147
Port bit configurationtable e 150
GPIO registermap andresetvalues 164
SYSCFGregister mapandresetvalues. 185
SYSCFG register map and reset values for STM32F09x devices 185
DMA1 and DMAZ implementation 189
DMA requests for each channel on STM32F03x/04x/05x devices. 189
DMA requests for each channel on STM32F07x devices. 190
DMA1 requests for each channel on STM32F09x devices. 193
DMAZ2 requests for each channel on STM32F09x devices. 194
Programmable data width and endian behavior (when PINC=MINC =1) 201
DMA Interrupt requests. e 202
DMA register mapandresetvalues 212
Vectortable. e 215
External interrupt/event controller register map and resetvalues. 225
CRC featureso 226
CRC internal input/outputsignals 227
CRCregistermapandresetvalues 232
ADC input/output PiNS.o 235
ADC internal input/output signals e 236
External triggers oo 236
Latency between trigger and start of conversion 240
Configuring the trigger polarity 244
tSAR timings dependingonresolution e 246
Analog watchdog comparison. e e 255

RM0091 Rev 10 ‘Yl

RMO0091 List of tables
Table 48. Analog watchdog channel selection 255
Table 49. ADC interrupts 261
Table 50. ADC registermap andresetvalues i 274
Table 51, DAC PINS. . . . o e 277
Table 52. External triggers 280
Table 53. DAC registermapandresetvalues i, 299
Table 54. COMP register map andresetvalues. i 308
Table 55. Acquisition sequence SUMMArYttt e 312
Table 56. Spread spectrum deviation versus AHB clock frequency 314
Table 57. 1/O state depending on its mode and IODEF bitvalue 315
Table 58. Effect of low-power modes on TSC i 317
Table 59. Interrupt control bits 317
Table 60. TSCregistermapandresetvalues 326
Table 61. Counting direction versus encodersignals. 367
Table 62. TIMx Internal trigger connection e 380
Table 63. Output control bits for complementary OCx and OCxN channels with

break feature. e 393
Table 64. TIM1 registermapandresetvalues. 402
Table 65. Counting direction versus encodersignals. 434
Table 66. TIM2 and TIM3 internal trigger connection. 451
Table 67. Output control bit for standard OCxchannels. 462
Table 68. TIM2 and TIM3 registermap andresetvalues. 469
Table 69. Output control bit for standard OCx channels. 488
Table 70. TIM14 registermap andresetvalues. 490
Table 71. TIMx Internal trigger connection 525
Table 72. Output control bits for complementary OCx and OCxN channels with break feature. . . . 535
Table 73. TIM15registermap andresetvalues. i 541
Table 74. Output control bits for complementary OCx and OCxN channels with break feature. ... 552
Table 75. TIM16/TIM17 registermap andresetvalues 558
Table 76. TIM6/TIM7 register map andresetvalues 572
Table 77. IWDG registermap andresetvalues i 582
Table 78. WWDG register mapandresetvalues. 588
Table 79. STM32F0xx RTC implementation., 590
Table 80. RTC pin PC13 configuration. e e 594
Table 81. LSE pin PC14 configuration e 594
Table 82. LSE pin PC15 configuration e 594
Table 83. Effect of low-power modes on RTC 606
Table 84. Interruptcontrol bits 607
Table 85. RTCregistermapandresetvalues 628
Table 86. STM32F0xx I12C implementation 632
Table 87. 12C input/output pins. e 634
Table 88. 12C internal input/output signals 635
Table 89. Comparison of analog vs. digital filters. 637
Table 90. 12C-SMBus specification data setupand holdtimes 640
Table 91. 12C configuration. 644
Table 92. 12C-SMBus specification clock timings. 655
Table 93. Examples of timing settings for I2CCLK=8MHz 665
Table 94. Examples of timings settings for I2CCLK =16 MHz 665
Table 95. Examples of timings settings for I2CCLK =48 MHz 666
Table 96. SMBus timeout specifications. 668
Table 97. SMBus with PEC configuration. 669
Table 98. Examples of TIMEOUTA settings for various I2CCLK frequencies
Kys RM0091 Rev 10 33/1017

List of tables RMO0091

Table 99.

Table 100.

Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.

Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
Table 135.
Table 136.
Table 137.
Table 138.
Table 139.
Table 140.
Table 141.
Table 142.
Table 143.
Table 144.
Table 145.
Table 146.

34/1017

(max tTlMEOUT =25 ms) .. 671
Examples of TIMEOUTB settings for various I2CCLK frequencies 671
Examples of TIMEOUTA settings for various 12CCLK frequencies

(Max tipLE =50 PUS) . . oo 671
Effect of low-power modesonthe 12C 682
[2C Interrupt requests 683
[2C registermap andresetvalues 698
STM32F0xx USART features e e 702
Noise detection fromsampleddata 714
Error calculation for programmed baud rates at fox = 48 MHz in both cases of
oversampling by 16 orby 8. 717
Tolerance of the USART receiver when BRR [3:0] =0000. 719
Tolerance of the USART receiver when BRR [3:0] is different from 0000 719
Frame formats e 723
Effect of low-power modes onthe USART 742
USART interrupt requests. 742
USART registermap andresetvalues. i 765
STM32F0xx SPI and SPI/I2S implementation 768
SPlinterruptrequests 793
Audio-frequency precision using 48 MHz clock derived fromHSE. 807
12S interrupt requests 813
SPl/I2S registermap and resetvalues 824
Transmit mailbox mapping 839
Receive mailbox mapping.o 839
bxCAN register map andresetvalues 864
STM32F0xx USB implementation. 868
Double-buffering buffer flag definition. 879
Bulk double-buffering memory buffersusage. L 879
Isochronous memory buffersusage 881
Resume event detection. 882
Reception status encoding 895
Endpointtype encoding 895
Endpointkind meaning e 895
Transmission status encoding 896
Definition of allocated buffermemory 899
USB registermap andresetvalues i 900
HDMI piN. . .o 903
Error handling timing parameters 909
TXERR timing parameters e 910
HDMI-CEC interrupts e 911
HDMI-CEC registermap andresetvalues 919
SWdebug port pins 922
DEV_IDand REV_IDfield values. 923
Packetrequest (8-bits) 924
ACKresponse (3 bits).ot 925
DATA transfer (33 bits)o 925
SW-DP registerso e 927
32-bit debug port registers addressed through the shifted value A[3:2] 928
Coredebugregisters 928
DBG registermap andresetvalues 935
Document revision history e 994

RM0091 Rev 10 ‘Yl

RM0091

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

S74

System architecture 44
MEMOrY MaP . . . o 47
Programming procedure. e 61
Flash memory Page erase procedure 63
Flash memory mass erase procedure i 64
Power sUupply OVeIVIEWo 81
Power on reset/power down resetwaveform, 84
PVD thresholds. e 85
Simplified diagram of the reset circuit. 96
Clock tree (STM32F03x and STM32F05x devices)ttt 99
Clock tree (STM32F04x, STM32F07x and STM32F09x devices) 100
HSE/LSE Clock SOUrCES. oo e 101
Frequency measurement with TIM14 incapturemode. 107
CRS block diagram. 139
CRS counter behavior e 140
Basic structure ofan /O port bit 150
Input floating / pull up / pull down configurations 154
Output configuration 155
Alternate function configuration 156
High impedance-analog configuration 156
DMAX request routing architecture on STM32F09x devices. 192
DMA block diagram 195
Extended interrupts and events controller (EXTI) block diagram 218
External interrupt/event GPIO mapping e 220
CRC calculation unit block diagram 227
ADC block diagram e 235
ADC calibration. e 237
Enabling/disabling the ADC 238
ADC clock scheme 239
Analog to digital conversiontime 243
ADC conversion timings i e 243
Stopping an oNgoing CONVETSIONttt e ettt 244
Single conversions of a sequence, software trigger. 247
Continuous conversion of a sequence, software trigger. 247
Single conversions of a sequence, hardware trigger 248
Continuous conversions of a sequence, hardware trigger 248
Data alignmentand resolution 249
Example of overrun (OVR) 250
Wait mode conversion (continuous mode, software trigger). 252
Behavior with WAIT =0, AUTOFF =1 e 253
Behavior with WAIT =1, AUTOFF =1 i 254
Analog watchdog guarded area 255
ADC_AWD1 _OUT signalgeneration it 256
ADC_AWD1_OUT signal generation (AWD flag not cleared by software)............ 257
ADC1_AWD_OUT signal generation (ona singlechannel)....................... 257
Analog watchdog thresholdupdate 258
Temperature sensor and VREFINT channel block diagram 259
DAC block diagram. e 277

RM0091 Rev 10 35/1017

List of figures RMO0091

Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.

Figure 71.

Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.

36/1017

Data registers in single DAC channelmode. 278
Timing diagram for conversion with trigger disabled TEN=0 279
Data registers in dual DAC channelmode i 281
DAC LFSR register calculation algorithm 286
DAC conversion (SW trigger enabled) with LFSR wave generation. 286
DAC triangle wave generation 287
DAC conversion (SW trigger enabled) with triangle wave generation 287
Comparator 1 and 2 block diagrams e 302
Comparator hysteresis e 303
TSCblock diagram 310
Surface charge transfer analog I/O group structure 311
Sampling capacitor voltage variation 312
Charge transfer acquisition sequence i 313
Spread spectrum variation principle 314
Advanced-control timer block diagram 329
Counter timing diagram with prescaler division change from1to2.............. ... 331
Counter timing diagram with prescaler division change from1to4.............. ... 331
Counter timing diagram, internal clock divided by 1. 333
Counter timing diagram, internal clock divided by 2. 333
Counter timing diagram, internal clock divided by 4 334
Counter timing diagram, internal clock divided by N. 334
Counter timing diagram, update event when ARPE=0

(TIMx_ARR not preloaded). e 335
Counter timing diagram, update event when ARPE=1

(TIMx_ARR preloaded). e e 335
Counter timing diagram, internal clock divided by 1. 336
Counter timing diagram, internal clock divided by 2. 337
Counter timing diagram, internal clock divided by 4 337
Counter timing diagram, internal clock divided by N. 337
Counter timing diagram, update event when repetition counteris notused. 338
Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 339
Counter timing diagram, internal clock divided by 2. 340
Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 340
Counter timing diagram, internal clock divided by N. 341
Counter timing diagram, update event with ARPE=1 (counter underflow) 341
Counter timing diagram, Update event with ARPE=1 (counter overflow)............. 342
Update rate examples depending on mode and TIMx_RCR register settings 343
Control circuit in normal mode, internal clock dividedby 1........................ 344
TI2 external clock connectionexample. 345
Control circuitin external clock mode 1 346
External trigger input block 346
Control circuitin external clock mode 2 347
Capture/compare channel (example: channel 1 inputstage) 348
Capture/compare channel 1 maincircuit 348
Output stage of capture/compare channel (channel1to3) 349
Output stage of capture/compare channel (channel 4). 349
PWM inputmode timing e 351
Output compare mode, toggle on OCT. e 353
Edge-aligned PWM waveforms (ARR=8) 355
Center-aligned PWM waveforms (ARR=8). 356
Complementary output with dead-time insertion. 358
Dead-time waveforms with delay greater than the negative pulse. 358

RM0091 Rev 10 ‘Yl

RMO0091 List of figures
Figure 99. Dead-time waveforms with delay greater than the positive pulse. 358
Figure 100. Output behaviorinresponsetoabreak 361
Figure 101. Clearing TIMX OCXREF e e 363
Figure 102. 6-step generation, COM example (OSSR=1). 364
Figure 103. Example ofone pulsemode 365
Figure 104. Example of counter operation in encoder interface mode. 368
Figure 105. Example of encoder interface mode with TI1TFP1 polarity inverted. 368
Figure 106. Example of hall sensorinterface. i 370
Figure 107. Control circuitinresetmode. 371
Figure 108. Control circuitingated mode e 372
Figure 109. Control circuit in triggermode. 373
Figure 110. Control circuit in external clock mode 2 + triggermode 374
Figure 111. General-purpose timer block diagram (TIM2and TIM3) 405
Figure 112. Counter timing diagram with prescaler division change from1to2................. 406
Figure 113. Counter timing diagram with prescaler division change from1to4................. 407
Figure 114. Counter timing diagram, internal clock divided by 1.......... 408
Figure 115. Counter timing diagram, internal clock divided by 2. 408
Figure 116. Counter timing diagram, internal clock divided by 4 409
Figure 117. Counter timing diagram, internal clock divided by N. 409
Figure 118. Counter timing diagram, Update event when ARPE=0

(TIMx_ARR not preloaded). e 410
Figure 119. Counter timing diagram, Update event when ARPE=1

(TIMx_ARR preloaded).o e e e 410
Figure 120. Counter timing diagram, internal clock divided by 1.......... 411
Figure 121. Counter timing diagram, internal clock divided by 2. 412
Figure 122. Counter timing diagram, internal clock divided by 4 412
Figure 123. Counter timing diagram, internal clock divided by N. 413
Figure 124. Counter timing diagram, Update event when repetition counteris notused 413
Figure 125. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 415
Figure 126. Counter timing diagram, internal clock divided by 2. 415
Figure 127. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 416
Figure 128. Counter timing diagram, internal clock divided by N. 416
Figure 129. Counter timing diagram, Update event with ARPE=1 (counter underflow). 417
Figure 130. Counter timing diagram, Update event with ARPE=1 (counter overflow)............. 417
Figure 131. Control circuit in normal mode, internal clock divided by 1........................ 418
Figure 132. TI2 external clock connection example. 419
Figure 133. Control circuit in external clock mode 1 i 420
Figure 134. External triggerinput block e 420
Figure 135. Control circuit in external clock mode 2 i 421
Figure 136. Capture/compare channel (example: channel 1 inputstage)...................... 422
Figure 137. Capture/compare channel 1 maincircuit 422
Figure 138. Output stage of capture/compare channel (channel 1). 423
Figure 139. PWM input mode timing 425
Figure 140. Output compare mode, toggle on OC1. i 427
Figure 141. Edge-aligned PWM waveforms (ARR=8) i 428
Figure 142. Center-aligned PWM waveforms (ARR=8). i 430
Figure 143. Example of one-pulse mode. 431
Figure 144. Clearing TIMx OCXREF 433
Figure 145. Example of counter operation in encoder interfface mode 435
Figure 146. Example of encoder interface mode with TI1TFP1 polarity inverted 435
Figure 147. Control circuitinresetmode. 436
Figure 148. Control circuitingatedmode 437
Kys RM0091 Rev 10 37/1017

List of figures RMO0091

Figure 149.
Figure 150.
Figure 151.
Figure 152.
Figure 153.
Figure 154.
Figure 155.
Figure 156.
Figure 157.
Figure 158.
Figure 159.
Figure 160.
Figure 161.
Figure 162.
Figure 163.
Figure 164.

Figure 165.

Figure 166.
Figure 167.
Figure 168.
Figure 169.
Figure 170.
Figure 171.
Figure 172.
Figure 173.
Figure 174.
Figure 175.
Figure 176.
Figure 177.
Figure 178.
Figure 179.
Figure 180.

Figure 181.

Figure 182.
Figure 183.
Figure 184.
Figure 185.
Figure 186.
Figure 187.
Figure 188.
Figure 189.
Figure 190.
Figure 191.
Figure 192.
Figure 193.
Figure 194.
Figure 195.
Figure 196.

38/1017

Control circuitintrigger mode. e 438
Control circuit in external clock mode 2 + triggermode 439
Master/Slave timerexample e 440
Gating timer 2 with OC1REF of timer 1, 441
Gating timer 2 with Enable of timer 1 442
Triggering timer 2 with update of timer 1 443
Triggering timer 2 with Enable of timer 1 444
Triggering timer 1 and 2 with timer 1 T input. 445
General-purpose timer block diagram (TIM14) 472
Counter timing diagram with prescaler division changefrom1to2.............. ... 473
Counter timing diagram with prescaler division change from1to4.............. ... 473
Counter timing diagram, internal clock divided by 1........ 474
Counter timing diagram, internal clock dividedby 2. 474
Counter timing diagram, internal clock divided by 4 475
Counter timing diagram, internal clock dividedby N. 475
Counter timing diagram, update event when ARPE=0

(TIMx_ARR not preloaded). e e 475
Counter timing diagram, update event when ARPE=1

(TIMx_ARR preloaded).o e e e 476
Control circuit in normal mode, internal clock dividedby 1. 476
Capture/compare channel (example: channel 1 inputstage) 477
Capture/compare channel 1 maincircuit, 477
Output stage of capture/compare channel (channel 1). 478
Output compare mode, toggle on OCT. e 481
Edge-aligned PWM waveforms (ARR=8) 482
TIM1S block diagram 493
TIM16 and TIM17 block diagram 495
Counter timing diagram with prescaler division change from1to2................. 496
Counter timing diagram with prescaler division change from1to4................. 497
Counter timing diagram, internal clock divided by 1........ 498
Counter timing diagram, internal clock dividedby 2. 499
Counter timing diagram, internal clock divided by 4 499
Counter timing diagram, internal clock dividedby N. 500
Counter timing diagram, update event when ARPE=0

(TIMx_ARR not preloaded). e e 500
Counter timing diagram, update event when ARPE=1

(TIMx_ARR preloaded).o e e e 501
Update rate examples depending on mode and TIMx_RCR register settings 502
Control circuit in normal mode, internal clock divided by 1. 503
TI2 external clock connection example. 503
Control circuitin external clock mode 1 504
Capture/compare channel (example: channel 1 inputstage). 505
Capture/compare channel 1 maincircuit 505
Output stage of capture/compare channel (channel 1). 506
Output stage of capture/compare channel (channel 2 for TIM15) 506
PWM input mode timing e 508
Output compare mode, toggle on OCT. e 510
Edge-aligned PWM waveforms (ARR=8) 511
Complementary output with dead-time insertion 512
Dead-time waveforms with delay greater than the negativepulse. 513
Dead-time waveforms with delay greater than the positive pulse. 513
Output behaviorinresponsetoabreak 516

RMO0091 Rev 10 Kys

RMO0091 List of figures
Figure 197. Example of One-pulse mode 517
Figure 198. Control circuitinresetmode. e 519
Figure 199. Control circuitingated mode 520
Figure 200. Control circuitin triggermode. 521
Figure 201. Basic timer block diagram. 560
Figure 202. Counter timing diagram with prescaler division change from1to2................. 562
Figure 203. Counter timing diagram with prescaler division change from1to4................. 562
Figure 204. Counter timing diagram, internal clock divided by 1.......... 563
Figure 205. Counter timing diagram, internal clock divided by 2. 564
Figure 206. Counter timing diagram, internal clock divided by 4 564
Figure 207. Counter timing diagram, internal clock divided by N. 565
Figure 208. Counter timing diagram, update event when ARPE =0

(TIMx_ARR not preloaded). e e 565
Figure 209. Counter timing diagram, update event when ARPE=1

(TIMx_ARR preloaded).o e e e 566
Figure 210. Control circuit in normal mode, internal clock divided by 1........................ 567
Figure 211. IRTIM internal hardware connections with TIM16 and TIM17 573
Figure 212. Independent watchdog block diagram L. 574
Figure 213. Watchdog block diagram 584
Figure 214. Window watchdog timing diagram 585
Figure 215. RTC block diagram in STM32F03x,

STM32F04x and STM32F05X deviCeso e e 591
Figure 216. RTC block diagram for STM32F07x

and STM32F09X deviCesot e 592
Figure 217. 12C1 block diagram 633
Figure 218. 12C2 block diagram. 634
Figure 219. 12C bus protocol 636
Figure 220. Setupand hold timings 638
Figure 221. [2C initialization flow 641
Figure 222. Datareception 642
Figure 223. Data transmission 643
Figure 224. Slave initialization flow 646
Figure 225. Transfer sequence flow for I12C slave transmitter, NOSTRETCH=0................ 648
Figure 226. Transfer sequence flow for I12C slave transmitter, NOSTRETCH=1................ 649
Figure 227. Transfer bus diagrams for I2C slave transmitter (mandatory eventsonly) 650
Figure 228. Transfer sequence flow for slave receiver with NOSTRETCH=0 651
Figure 229. Transfer sequence flow for slave receiver with NOSTRETCH=1 652
Figure 230. Transfer bus diagrams for I12C slave receiver

(mandatory events only) 652
Figure 231. Master clock generation 654
Figure 232. Master initialization flow 656
Figure 233. 10-bit address read access with HEAD1OR =0 656
Figure 234. 10-bit address read access with HEAD1OR =1 657
Figure 235. Transfer sequence flow for I2C master transmitter for N<255bytes 658
Figure 236. Transfer sequence flow for I2C master transmitter for N > 255 bytes 659
Figure 237. Transfer bus diagrams for I2C master transmitter

(mandatory events only) 660
Figure 238. Transfer sequence flow for I2C master receiver for N<255bytes 662
Figure 239. Transfer sequence flow for I2C master receiver forN >255bytes 663
Figure 240. Transfer bus diagrams for I2C master receiver

(mandatory events only) 664
Figure 241. Timeout intervals for t| ow:SEXT: LOWMEXT- - -« -« v v v e 668
Kys RM0091 Rev 10 39/1017

List of figures RMO0091

Figure 242.
Figure 243.
Figure 244.
Figure 245.
Figure 246.
Figure 247.
Figure 248.
Figure 249.
Figure 250.
Figure 251.
Figure 252.
Figure 253.
Figure 254.
Figure 255.
Figure 256.
Figure 257.
Figure 258.
Figure 259.
Figure 260.
Figure 261.
Figure 262.
Figure 263.
Figure 264.
Figure 265.
Figure 266.
Figure 267.
Figure 268.
Figure 269.
Figure 270.
Figure 271.
Figure 272.
Figure 273.
Figure 274.
Figure 275.
Figure 276.

Figure 277.
Figure 278.
Figure 279.
Figure 280.
Figure 281.
Figure 282.
Figure 283.
Figure 284.
Figure 285.
Figure 286.
Figure 287.
Figure 288.
Figure 289.
Figure 290.
Figure 291.
Figure 292.

40/1017

Transfer sequence flow for SMBus slave transmitter N bytes + PEC. 672
Transfer bus diagrams for SMBus slave transmitter (SBC=1) 672
Transfer sequence flow for SMBus slave receiver Nbytes+PEC.................. 674
Bus transfer diagrams for SMBus slave receiver (SBC=1)....................... 675
Bus transfer diagrams for SMBus master transmitter. 676
Bus transfer diagrams for SMBus masterreceiver. 678
USART block diagram 704
Word length programming 706
Configurable stop bits. e 708
TC/TXE behavior when transmitting. 709
Start bit detection when oversamplingby 16 0r8.........., 710
Data sampling when oversamplingby 16. 714
Data sampling when oversampling by 8. 714
Mute mode using Idle line detection 721
Mute mode using address mark detection 722
Break detection in LIN mode (11-bit break length - LBDL bitisset)................. 725
Break detection in LIN mode vs. Framing error detection. 726
USART example of synchronous transmission. 727
USART data clock timing diagram (M bits =00). 727
USART data clock timing diagram (M bits =01) 728
RX data setup/hold time 728
ISO 7816-3 asynchronous protocol 730
Parity error detection usingthe 1.5 stop bits 731
IrDA SIR ENDEC- block diagram e 735
IrDA data modulation (3/16) -NormalMode 735
Transmission using DMA 737
Reception using DMA e 738
Hardware flow control between 2 USARTS i 738
RS232 RTS flow control 739
RS232 CTS flow control 740
USART interrupt mapping diagram 743
SPIblock diagram. 769
Full-duplex single master/ single slave application. 770
Half-duplex single master/ single slave application 771
Simplex single master/single slave application (master in transmit-only/

slave in receive-only mode) 772
Master and three independent slaves. 773
Multi-master application 774
Hardware/software slave select management 775
Data clock timing diagram 776
Data alignment when data length is not equal to 8-bitor 16-bit 777
Packing data in FIFO for transmission and reception. 781
Master full-duplex communication 784
Slave full-duplex communication 785
Master full-duplex communication withCRC 786
Master full-duplex communication in packedmode 787
NSSP pulse generation in Motorola SPI mastermode. 790
TImode transfer 791
[2S block diagram 794
Full-duplex communication. e 796
1°S Philips protocol waveforms (16/32-bit full accuracy). 797
1°S Philips standard waveforms (24-bitframe) 797

RMO0091 Rev 10 Kys

RMO0091 List of figures
Figure 293. Transmitting OX8EAASS 798
Figure 294. Receiving OX8EAASS 798
Figure 295. 12S Philips standard (16-bit extended to 32-bit packet frame) 798
Figure 296. Example of 16-bit data frame extended to 32-bit channel frame 798
Figure 297. MSB Justified 16-bit or 32-bit full-accuracy length 799
Figure 298. MSB justified 24-bitframelength 799
Figure 299. MSB justified 16-bit extended to 32-bit packetframe 800
Figure 300. LSB justified 16-bit or 32-bit full-accuracy i i 800
Figure 301. LSB justified 24-bitframelength. 800
Figure 302. Operations required to transmit Ox3478AE. 801
Figure 303. Operations required to receive Ox3478AE 801
Figure 304. LSB justified 16-bit extended to 32-bit packetframe 801
Figure 305. Example of 16-bit data frame extended to 32-bit channel frame 802
Figure 306. PCM standard waveforms (16-bit) 802
Figure 307. PCM standard waveforms (16-bit extended to 32-bit packet frame). 803
Figure 308. Start sequenceinmastermode 804
Figure 309. Audio sampling frequency definition. 805
Figure 310. 12S clock generator architeCtureoo i 805
Figure 311. CAN network topology 826
Figure 312. Single-CAN block diagram 827
Figure 313. bxCAN operating modes. 829
Figure 314. bxCAN insilentmode 830
Figure 315. bxCAN inloopbackmode 830
Figure 316. bxCAN incombined mode 831
Figure 317. Transmitmailbox states 832
Figure 318. Receive FIFO states. 833
Figure 319. Filter bank scale configuration - Register organization. 836
Figure 320. Example of filter numbering 837
Figure 321. Filtering mechanismexample. e 838
Figure 322. CAN error state diagram. 839
Figure 323. Bit timing. 841
Figure 324. CAN frames 842
Figure 325. Event flags and interrupt generation. 843
Figure 326. CAN mailbox registers 855
Figure 327. USB peripheral block diagram 870
Figure 328. Packet buffer areas with examples of buffer description table locations 874
Figure 329. HDMI-CEC block diagram e 903
Figure 330. Message structure 904
Figure 331, BlOCKSo e 904
Figure 332. Bit timingso 905
Figure 333. Signalfree time. 905
Figure 334. Arbitration phase. 906
Figure 335. SFT of three nominal bit periods., 906
Figure 336. Error bit timing 907
Figure 337. Errorhandling 908
Figure 338. TXERR detection e e 910
Figure 339. Block diagram of STM32F0xx MCU and Cortex®-M0-level debug support 920
Kys RM0091 Rev 10 4111017

Documentation conventions RM0091

1 Documentation conventions

1.1 General information
The STM32F0xx devices have an Arm®®@ Cortex®-M0 core.

arm

1.2 List of abbreviations for registers

The following abbreviations®) are used in register descriptions:

read/write (rw) Software can read and write to this bit.

read-only (r) Software can only read this bit.

write-only (w) Software can only write to this bit. Reading this bit returns the reset value.

read/clear writeO (rc_wO0) Software can read as well as clear this bit by writing 0. Writing 1 has no
effect on the bit value.

read/clear write1 (rc_w1) Software can read as well as clear this bit by writing 1. Writing 0 has no
effect on the bit value.

read/clear write (rc_w) Software can read as well as clear this bit by writing to the register. The
value written to this bit is not important.

read/clear by read (rc_r) Software can read this bit. Reading this bit automatically clears it to 0.
Writing this bit has no effect on the bit value.

read/set by read (rs_r) Software can read this bit. Reading this bit automatically sets it to 1.
Writing this bit has no effect on the bit value.

read/set (rs) Software can read as well as set this bit. Writing 0 has no effect on the bit
value.

read/write once (rwo) Software can only write once to this bit and can also read it at any time.
Only a reset can return the bit to its reset value.

toggle (t) The software can toggle this bit by writing 1. Writing 0 has no effect.

read-only write trigger (rt_w1) Software can read this bit. Writing 1 triggers an event but has no effect on
the bit value.

Reserved (Res.) Reserved bit, must be kept at reset value.

a. Armis a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

b. This is an exhaustive list of all abbreviations applicable to STMicroelectronics microcontrollers, some of
them may not be used in the current document.

42/1017 RMO0091 Rev 10 ‘Yl

RMO0091 Documentation conventions
1.3 Glossary

This section gives a brief definition of acronyms and abbreviations used in this document:

e Word: data of 32-bit length.

e Half-word: data of 16-bit length.

e Byte: data of 8-bit length.

e SWD-DP (SWD DEBUG PORT): SWD-DP provides a 2-pin (clock and data) interface
based on the Serial Wire Debug (SWD) protocol. Please refer to the Cortex®-M0
technical reference manual.

e |AP (in-application programming): IAP is the ability to re-program the flash memory
of a microcontroller while the user program is running.

e ICP (in-circuit programming): ICP is the ability to program the flash memory of a
microcontroller using the JTAG protocol, the SWD protocol or the bootloader while the
device is mounted on the user application board.

e Option bytes: product configuration bits stored in the flash memory.

e OBL: option byte loader.

e AHB: advanced high-performance bus.

e APB: advanced peripheral bus.

1.4 Availability of peripherals

3

For availability of peripherals and their number across all sales types, refer to the particular
device datasheet.

RMO0091 Rev 10 43/1017

System and memory overview

RM0091

2

2.1

System architecture

The main system consists of:

e Up to three masters:
Cortex®-MO core
General-purpose DMA1
General purpose DMA2 (available on STM32F09x devices only)
e Four slaves:
Internal SRAM
Internal flash memory
AHB1 with AHB to APB bridge, which connects all the APB peripherals
AHB2 dedicated to GPIO ports

These are interconnected using a multilayer AHB bus architecture, as shown in Figure 1:

System and memory overview

Figure 1. System architecture

FLITF
Arm® <::> Flash interface <::> Flash memory
Cortex®-Mo0 x
core
() srau
Bus matrix ~
DMA1 .!m GPIO ports
channels 1to 7 A’B'C.’.D’E'F
DMAAz it <m> AHEritgg/:PB 'APB bus
channels 1to 5
A TT
N[SYSCFG,
1T ADC, DAC,
Reset and Touch COMP,
clock sensing TIM1, TIM2, TIM3,
controller <:> <:> controller TIMG, TIM7,
(RCC) (TSC) TIM14 to TIM17,
IWDG, WWDG,
S CRC RTC, CAN, CRS, PWR,
12C1, 12C2,
N USART1 to USARTS,
SPI1/1281, SPI2/12S2,
TSC, HDMI-CEC,
DMA requests DBGMCU

MS19217V5

System bus

This bus connects the system bus of the Cortex®-M0 core (peripherals bus) to a BusMatrix
which manages the arbitration between the core and the DMA.

44/1017

RMO0091 Rev 10

3

RM0091

System and memory overview

Note:

3

DMA bus

This bus connects the AHB master interface of the DMA to the BusMatrix which manages
the access of CPU and DMA to SRAM, flash memory and peripherals.

BusMatrix

The BusMatrix manages the access arbitration between the core system bus and the DMA
master bus. The arbitration uses a Round Robin algorithm. The BusMatrix is composed of
up to three masters (CPU, DMA1, DMA2) and four slaves (FLITF, SRAM, AHB1 with AHB to
APB bridge and AHB2).

AHB peripherals are connected on system bus through a BusMatrix to allow DMA access.

AHB to APB bridge (APB)

The AHB to APB bridge provides full synchronous connections between the AHB and the
APB bus.

Refer to Section 2.2.2: Memory map and register boundary addresses for the address
mapping of the peripherals connected to this bridge.

After each device reset, all peripheral clocks are disabled (except for the SRAM and flash).
Before using a peripheral you have to enable its clock in the RCC_AHBENR,
RCC_APB2ENR or RCC_APB1ENR register.

When a 16- or 8-bit access is performed on an APB register, the access is transformed into
a 32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector.

RMO0091 Rev 10 45/1017

RM0091

2.2

2.2.1

46/1017

Memory organization

Introduction

Program memory, data memory, registers and I/O ports are organized within the same linear
4-Gbyte address space.

The bytes are coded in memory in Little Endian format. The lowest numbered byte in a word
is considered the word’s least significant byte and the highest numbered byte the most
significant.

The addressable memory space is divided into eight main blocks, of 512 Mbytes each.

3

RMO0091 Rev 10

RM0091

2.2.2 Memory map and register boundary addresses
Figure 2. Memory map
OxFFFF FFFF
7 0x4800 17FF
0xE010 0000 AHB2
Cortex-MO 0x4800 0000
peripherals
0xE000 0000
6
0xC000 0000
0x4002 43FF
5 AHB1
0x4002 0000
0xA000 0000
0x4001 8000
4 Ox1FFF]
Option bytes APB
0x8000 0000 0x4001 0000
System memory
3 0x4000 8000
APB
0x6000 0000 0x4000 0000
2
0x4000 0000 Peripherals
1 Main
Flash memory
0x2000 0000 SRAM 0x0800 0000
0 CODE
Flash, system
memory or SRAM,
0x0000 0000 depending on
BOOT configuration
0x0000 0000 ‘:I Reserved
All the memory map areas not allocated to on-chip memories and peripherals are
considered “Reserved”. For the detailed mapping of available memory and register areas,
refer to the following table, which gives the boundary addresses of the available peripherals.
Table 1. STM32F0xx peripheral register boundary addresses
Bus Boundary address Size Peripheral Peripheral register map
®_ .
- | 0xE000 0000 - OXEOOF FFFF | 1MB Cortex™-M0 internal -
peripherals
- 0x4800 1800 - Ox5FFF FFFF |~384 MB |Reserved -

3

RMO0091 Rev 10

4711017

RM0091

Table 1. STM32F0xx peripheral register boundary addresses (continued)

Bus Boundary address Size Peripheral Peripheral register map
0x4800 1400 - 0x4800 17FF | 1KB GPIOF Section 8.4.12 on page 164
0x4800 1000 - 0x4800 13FF |1KB GPIOE Section 8.4.12 on page 164
0x4800 0C00 - 0x4800 OFFF | 1KB GPIOD Section 8.4.12 on page 164
ARB2 0x4800 0800 - 0x4800 OBFF | 1KB GPIOC Section 8.4.12 on page 164
0x4800 0400 - 0x4800 07FF | 1KB GPIOB Section 8.4.12 on page 164
0x4800 0000 - 0x4800 03FF | 1KB GPIOA Section 8.4.12 on page 164
- 0x4002 4400 - Ox47FF FFFF |~128 MB |Reserved -
0x4002 4000 - 0x4002 43FF |1 KB TSC Section 16.6.11 on page 326
0x4002 3400 - 0x4002 3FFF |3 KB Reserved -
0x4002 3000 - 0x4002 33FF |1 KB CRC Section 12.5.6 on page 232
0x4002 2400 - 0x4002 2FFF |3 KB Reserved -
0x4002 2000 - 0x4002 23FF |1 KB FLASH interface Section 3.5.9 on page 75
AHBI 0x4002 1400 - 0x4002 1FFF |3 KB Reserved -
0x4002 1000 - 0x4002 13FF |1 KB RCC Section 6.4.15 on page 136
0x4002 0800 - 0x4002 OFFF |2 KB Reserved -
0x4002 0400 - 0x4002 07FF |1 KB DMA2 Section 10.6.8 on page 212
0x4002 0000 - 0x4002 03FF |1 KB DMA Section 10.6.8 on page 212
- 0x4001 8000 - 0x4001 FFFF |32 KB Reserved -

3

48/1017 RMO0091 Rev 10

RM0091

Table 1. STM32F0xx peripheral register boundary addresses (continued)

Bus Boundary address Size Peripheral Peripheral register map
0x4001 5C00 - 0x4001 7FFF |9 KB Reserved -
0x4001 5800 - 0x4001 5BFF |1 KB DBGMCU Section 32.9.6 on page 934
0x4001 4C00 - 0x4001 57FF |3 KB Reserved -
0x4001 4800 - 0x4001 4BFF |1 KB TIM17 Section 20.6.17 on page 558
0x4001 4400 - 0x4001 47FF |1 KB TIM16 Section 20.6.17 on page 558
0x4001 4000 - 0x4001 43FF |1 KB TIM15 Section 20.5.19 on page 541
0x4001 3C00 - 0x4001 3FFF |1 KB Reserved -
0x4001 3800 - 0x4001 3BFF |1 KB USART1 Section 27.8.12 on page 765
0x4001 3400 - 0x4001 37FF |1 KB Reserved -
0x4001 3000 - 0x4001 33FF |1 KB SPI1/1281 Section 28.9.10 on page 824
APB | 0x4001 2C00 - 0x4001 2FFF |1 KB TIM1 Section 17.4.21 on page 402
0x4001 2800 - 0x4001 2BFF |1 KB Reserved -
0x4001 2400 - 0x4001 27FF |1 KB ADC Section 13.12 on page 274
0x4001 2000 - 0x4001 23FF |1 KB Reserved -
0x4001 1C00 -0x4001 1FFF |1 KB USART8 Section 27.8.12 on page 765
0x4001 1800 - 0x4001 1BFF |1 KB USART7 Section 27.8.12 on page 765
0x4001 1400 - 0x4001 17FF |1 KB USART6 Section 27.8.12 on page 765
0x4001 0800 - 0x4001 13FF |3 KB Reserved -
0x4001 0400 - 0x4001 O7FF |1 KB EXTI Section 11.3.7 on page 225
0x4001 0000 - 0x4001 03FF |1 KB SYSCFG Section 9.7.35 on page 785
COmMP Section 15.5.2 on page 308
- 0x4000 8000 - 0x4000 FFFF |32 KB Reserved -

3

RMO0091 Rev 10

49/1017

RM0091

Table 1. STM32F0xx peripheral register boundary addresses (continued)

Bus Boundary address Size Peripheral Peripheral register map
0x4000 7C00 - 0x4000 7FFF |1 KB Reserved -
0x4000 7800 - 0x4000 7BFF |1 KB CEC Section 31.7.7 on page 919
0x4000 7400 - 0x4000 77FF |1 KB DAC Section 14.10.15 on page 299
0x4000 7000 - 0x4000 73FF |1 KB PWR Section 5.4.3 on page 94
0x4000 6C00 - 0x4000 6FFF |1 KB CRS Section 7.7.5 on page 147
0x4000 6800 - 0x4000 6BFF |1 KB Reserved -
0x4000 6400 - 0x4000 67FF |1 KB CAN Section 29.9.5 on page 864
0x4000 6000 - 0x4000 63FF |1 KB USB/CAN SRAM Section 30.6.3 on page 900
0x4000 5C00 - 0x4000 5FFF |1 KB USB Section 30.6.3 on page 900
0x4000 5800 - 0x4000 5BFF |1 KB 12C2 Section 26.7.12 on page 698
0x4000 5400 - 0x4000 57FF |1 KB 12C1 Section 26.7.12 on page 698
0x4000 5000 - 0x4000 53FF |1 KB USART5 Section 27.8.12 on page 765
0x4000 4C00 - 0x4000 4FFF |1 KB USART4 Section 27.8.12 on page 765
0x4000 4800 - 0x4000 4BFF |1 KB USART3 Section 27.8.12 on page 765
APB | 0x4000 4400 - 0x4000 47FF |1 KB USART2 Section 27.8.12 on page 765
0x4000 3C00 - 0x4000 43FF |2 KB Reserved -
0x4000 3800 - 0x4000 3BFF |1 KB SPI2 Section 28.9.10 on page 824
0x4000 3400 - 0x4000 37FF |1 KB Reserved -
0x4000 3000 - 0x4000 33FF |1 KB IWDG Section 23.4.6 on page 582
0x4000 2C00 - 0x4000 2FFF |1 KB WWDG Section 24.5.4 on page 588
0x4000 2800 - 0x4000 2BFF |1 KB RTC Section 25.7.18 on page 628
0x4000 2400 - 0x4000 27FF |1 KB Reserved -
0x4000 2000 - 0x4000 23FF |1 KB TIM14 Section 19.4.13 on page 490
0x4000 1800 - 0x4000 1FFF |2 KB Reserved -
0x4000 1400 - 0x4000 17FF |1 KB TIM7 Section 21.4.9 on page 572
0x4000 1000 - 0x4000 13FF |1 KB TIM6 Section 21.4.9 on page 572
0x4000 0800 - 0x4000 OFFF |2 KB Reserved -
0x4000 0400 - 0x4000 07FF |1 KB TIM3 Section 18.4.19 on page 469
0x4000 0000 - 0x4000 03FF |1 KB TIM2 Section 18.4.19 on page 469
50/1017 RMO0091 Rev 10 ‘,_l

RM0091

Table 2. STM32F0xx memory boundary addresses

Device Boundary address Size Memory Area Register description
0x2000 1000 - 0x3FFF FFFF |~512 MB |Reserved -
0x2000 0000 - 0x2000 OFFF |4 KB SRAM Section 2.3 on page 52
O0x1FFF FCOO0 - Ox1FFF FFFF | 1 KB Reserved -
Ox1FFF F800 - Ox1FFF FBFF |1 KB Option bytes Section 4 on page 76
O0x1FFF ECOO0 - Ox1FFF F7FF | 3 KB System memory -
STM32F03x 0x0800 8000 - 0x1FFF EBFF |~384 MB |Reserved -
0x0800 0000 - 0x0800 7FFF |32 KB Main flash memory Section 3 on page 56
0x0000 8000 - 0x07FF FFFF |~128 MB |Reserved -
Main flash memory,
0x0000 0000 - 0x0000 7FFF |32 KB Zﬁs::rr:ﬂ:ge?:gooroim'\" -
configuration
0x2000 1800 - 0x3FFF FFFF |~512 MB |Reserved -
0x2000 0000 - 0x2000 17FF |6 KB SRAM Section 2.3 on page 52
Ox1FFF FCOO0 - Ox1FFF FFFF | 1 KB Reserved -
0x1FFF F800 - Ox1FFF FBFF |1 KB Option bytes Section 4 on page 76
O0x1FFF C400 - Ox1FFF F7FF |13 KB System memory -
STM32F04x 0x0801 8000- Ox1FFF C7FF |~384 MB |Reserved -
0x0800 0000 - 0x0801 7FFF |32 KB Main flash memory Section 3 on page 56
0x0001 8000 - Ox07FF FFFF |~128 MB |Reserved -
Main flash memory,
0x0000 0000 - 0x0000 7FFF |32 KB Z)ésr)t::c]ji:gergr?ggrO?RAM :
configuration
0x2000 2000 - 0x3FFF FFFF |~512 MB |Reserved -
0x2000 0000 - 0x2000 1FFF |8 KB SRAM Section 2.3 on page 52
O0x1FFF FCOO0 - Ox1FFF FFFF | 1 KB Reserved -
O0x1FFF F800 - Ox1FFF FBFF |1 KB Option bytes Section 4 on page 76
O0x1FFF ECOO0 - Ox1FFF F7FF | 3 KB System memory -
STM32F05x 0x0801 0000 - Ox1FFF EBFF |~384 MB |Reserved -
0x0800 0000 - 0x0800 FFFF |64 KB Main flash memory Section 3 on page 56
0x0001 0000 - Ox07FF FFFF |~128 MB |Reserved -
Main flash memory,
0x0000 0000 - 0x0000 FFFF |64 kB | SyStem memory or SRAM :

depending on BOOT
configuration

3

RMO0091 Rev 10

51/1017

RM0091

Table 2. STM32F0xx memory boundary addresses (continued)

Device Boundary address Size Memory Area Register description
0x2000 4000 - 0x3FFF FFFF |~512 MB |Reserved -
0x2000 0000 - 0x2000 3FFF |16 KB SRAM Section 2.3 on page 52
0x1FFF F800 - Ox1FFF FFFF |2 KB Option bytes Section 4 on page 76
O0x1FFF C800 - Ox1FFF F7FF |12 KB System memory -
0x0802 0000 - 0x1FFF C7FF |~384 MB |Reserved -
STM32F07x
0x0800 0000 - 0x0801 FFFF |128 KB Main flash memory Section 3 on page 56
0x0002 0000 - Ox07FF FFFF |~128 MB | Reserved -
Main flash memory,
) system memory or SRAM)
0x0000 0000 - 0x0001 FFFF |128 KB depending on BOOT
configuration
0x2000 8000 - 0x3FFF FFFF |~512 MB |Reserved -
0x2000 0000 - 0x2000 7FFF |32 KB SRAM Section 2.3 on page 52
Ox1FFF F800 - Ox1FFF FFFF |2 KB Option bytes Section 4 on page 76
O0x1FFF D800 - Ox1FFF F7FF |8 KB System memory -
0x0804 0000 - Ox1FFF D7FF |~384 MB |Reserved -
STM32F09x
0x0800 0000 - 0x0803 FFFF |256 KB Main flash memory Section 3 on page 56
0x0004 0000 - 0x07FF FFFF |~128 MB |Reserved -
Main flash memory,
) system memory or SRAM)
0x0000 0000 - 0x0003 FFFF |256 KB depending on BOOT
configuration
2.3 Embedded SRAM

52/1017

STM32F03x devices feature 4 Kbytes of static SRAM. STM32F04x devices feature

6 Kbytes of static SRAM. STM32F05x devices feature 8 Kbytes of static SRAM.
STM32F07xS devices feature 16 Kbytes of static SRAM. STM32F09x devices feature
32 Kbytes of static SRAM.

This RAM can be accessed as bytes, half-words (16 bits) or full words (32 bits). This
memory can be addressed at maximum system clock frequency without wait state and thus
by both CPU and DMA.

Parity check

The user can enable the parity check using the option bit RAM_PARITY_CHECK in the user
option byte (refer to Section 4: Option bytes).

The data bus width is 36 bits because 4 bits are available for parity check (1 bit per byte) in
order to increase memory robustness, as required for instance by Class B or SIL norms.

The parity bits are computed and stored when writing into the SRAM. Then, they are
automatically checked when reading. If one bit fails, an NMI is generated. The same error
can also be linked to the BRK_IN Break input of TIM1/15/16/17, with the

RM0091 Rev 10 ‘Yl

RM0091

Note:

24

3

SRAM_PARITY_LOCK control bit in the SYSCFG configuration register 2
(SYSCFG_CFGR2). The SRAM Parity Error flag (SRAM_PEF) is available in the SYSCFG
configuration register 2 (SYSCFG_CFGR2).

When enabling the RAM parity check, it is advised to initialize by software the whole RAM
memory at the beginning of the code, to avoid getting parity errors when reading non-
initialized locations.

Flash memory overview

The flash memory is composed of two distinct physical areas:

e The main flash memory block. It contains the application program and user data if
necessary.

e The information block. It is composed of two parts:
— option bytes for hardware and memory protection user configuration
— system memory which contains the proprietary boot loader code
(refer to Section 3: Embedded flash memory for more details.)

The flash interface implements instruction access and data access based on the AHB
protocol. It implements the prefetch buffer that speeds up CPU code execution. It also
implements the logic necessary to carry out the flash memory operations (Program/Erase)
controlled through the flash registers.

RMO0091 Rev 10 53/1017

RM0091

2.5

54/1017

Boot configuration

In the STM32F0xx, three different boot modes can be selected through the BOOTO pin and
boot configuration bits nBOOT1, BOOT_SEL and nBOOTO in the User option byte, as
shown in the following table.

Table 3. Boot modes (!

Boot mode configuration
nBOOT1 | BOOTO |BOOT SEL| nBOOTO Mode
bit pin bit bit
X 0 1 X Main flash memory is selected as boot area®
1 1 1 X System memory is selected as boot area
0 1 1 X Embedded SRAM is selected as boot area
X X 0 1 Main flash memory is selected as boot area
1 X 0 0 System memory is selected as boot area
0 X 0 0 Embedded SRAM is selected as boot area

1. Grey options are available on STM32F04x and STM32F09x devices only.
2. For STM32F04x and STM32F09x devices, see also Empty check description.

The boot mode configuration is latched on the 4th rising edge of SYSCLK after a reset. It is
up to the user to set boot mode configuration related to the required boot mode.

The boot mode configuration is also re-sampled when exiting from Standby mode.
Consequently they must be kept in the required Boot mode configuration in Standby mode.
After this startup delay has elapsed, the CPU fetches the top-of-stack value from address
0x0000 0000, then starts code execution from the boot memory at 0x0000 0004.

Depending on the selected boot mode, main flash memory, system memory or SRAM is
accessible as follows:

e Boot from main flash memory: the main flash memory is aliased in the boot memory
space (0x0000 0000), but still accessible from its original memory space
(0x0800 0000). In other words, the flash memory contents can be accessed starting
from address 0x0000 0000 or 0x0800 0000.

e Boot from system memory: the system memory is aliased in the boot memory space
(0x0000 0000), but still accessible from its original memory space(0x1FFF EC00 on
STM32F03x and STM32F05x devices, 0x1FFF C400 on STM32F04x devices, Ox1FFF
C800 on STM32F07x and 0x1FFF D800 on STM32F09x devices).

e Boot from the embedded SRAM: the SRAM is aliased in the boot memory space
(0x0000 0000), but it is still accessible from its original memory space (0x2000 0000).

Empty check

On STM32F04x and STM32FQ09x devices only, internal empty check flag is implemented to
allow easy programming of virgin devices by the boot loader. This flag is used when BOOTO
pin is defining Main flash memory as the target boot area. When the flag is set, the device is
considered as empty and System memory (boot loader) is selected instead of the main flash
as a boot area to allow user to program the flash memory.

RM0091 Rev 10 ‘Yl

RM0091

Note:

3

This flag is updated only during the loading of option bytes: it is set when the content of the
address 0x08000 0000 is read as OxFFFF FFFF, otherwise it is cleared. It means a power
reset or setting of OBL_LAUNCH bit in FLASH_CR register is needed to clear this flag after
programming of a virgin device to execute user code after System reset.

If the device is programmed for a first time but the option bytes are not reloaded, the device
still selects System memory as a boot area after a System reset. In the STM32F04x, the
boot loader code is able to detect this situation. It then changes the boot memory mapping
to main flash and performs a jump to user code programmed there. In the STM32F09x, a
POR must be performed or the Option bytes reloaded before applying the system reset.

Physical remap

Once the boot mode is selected, the application software can modify the memory accessible
in the code area. This modification is performed by programming the MEM_MODE bits in
the SYSCFG configuration register 1 (SYSCFG_CFGR1). Unlike Cortex® M3 and M4, the
MO CPU does not support the vector table relocation. For application code which is located
in a different address than 0x0800 0000, some additional code must be added in order to be
able to serve the application interrupts. A solution is to relocate by software the vector table
to the internal SRAM:

e Copy the vector table from the flash (mapped at the base of the application load
address) to the base address of the SRAM at 0x2000 0000.

e Remap SRAM at address 0x0000 0000, using SYSCFG configuration register 1.

e Then once an interrupt occurs, the Cortex®-M0 processor fetches the interrupt handler
start address from the relocated vector table in SRAM, then it jumps to execute the
interrupt handler located in the flash.

This operation should be done at the initialization phase of the application. Please refer to
AN4065 and attached IAP code from www.st.com for more details.

Embedded boot loader

The embedded boot loader is located in the System memory, programmed by ST during
production. It is used to reprogram the flash memory using one of the following serial
interfaces:

e USART on pins PA9/PA10, PA14/PA15 or PA2/PA3
e |2C on pins PB6/PB7 (STM32F04xxx, STM32F07xxx and STM32F09xxx devices only)
e USB DFU interface (STM32F04xxx and STM32F07xxx devices only)

For further details, refer to the application note AN2606.

RMO0091 Rev 10 55/1017

Embedded flash memory RM0091

3

3.1

3.2

3.2.1

56/1017

Embedded flash memory

Flash main features

e Up to 256 Kbyte of flash memory
e Memory organization:

— Main flash memory block:
Up to 64 Kword (64 K x 32 bits)

— Information block:
Up to 3 Kword (3 K x 32 bits) for the system memory

— Up to 2 x 8 byte for the option byte

Flash memory interface features:

e Read interface with prefetch buffer
e Option byte loader

e Flash program / erase operation

e Read / write protection

e Low-power mode

Flash memory functional description

Flash memory organization

The flash memory is organized as 32-bit wide memory cells that can be used for storing
both code and data constants.

The memory organization of STM32F03x, STM32F04x and STM32F05x devices is based
on a main flash memory block containing up to 64 pages of 1 Kbyte or up to 16 sectors of
4 Kbytes (4 pages). The sector is the granularity of the write protection (see Section 3.3).

The memory organization of STM32F07x and STM32F09x devices is based on a main flash
memory block containing up to 128 pages of 2 Kbytes or up to 64 sectors of 4 Kbytes (2
pages). The sector is the granularity of the write protection (see Section 3.3).

The information block is divided into two parts:

1. System memory: used to boot the device in System memory boot mode. The area is
reserved for use by STMicroelectronics and contains the boot loader, which is used to
reprogram the flash memory through the selected communication interface. It is
programmed by ST when the device is manufactured, and protected against spurious
write/erase operations. For further details refer to AN2606.

2. Option byte

3

RMO0091 Rev 10

RM0091 Embedded flash memory
Table 4. Flash memory organization (STM32F03x, STM32F04x and
STM32F05x devices)

Flash area Flash memory addresses Size (byte) Name Description
0x0800 0000 - 0x0800 03FF 1 Kbyte Page 0
0x0800 0400 - 0x0800 O7FF 1 Kbyte Page 1

Sector 0

0x0800 0800 - 0x0800 OBFF 1 Kbyte Page 2
0x0800 0CO00 - 0x0800 OFFF 1 Kbyte Page 3
0x0800 7000 - 0x0800 73FF 1 Kbyte Page 28

Main flash 0x0800 7400 - 0x0800 77FF 1 Kbyte Page 29 sector 71

memory 0x0800 7800 - 0x0800 7BFF 1 Kbyte Page 30
0x0800 7C00 - 0x0800 7FFF 1 Kbyte Page 31
0x0800 FO0O - 0x0800 F3FF 1 Kbyte Page 60
0x0800 F400 - 0x0800 F7FF 1 Kbyte Page 61
Sector 15

0x0800 F800 - 0x0800 FBFF 1 Kbyte Page 62
0x0800 FCO0O0 - 0x0800 FFFF 1 Kbyte Page 63
0x1FFF ECO0 - Ox1FFF F7FF 3 Kbyte(® - System memory

Information @)

block 0x1FFF C400 -Ox1FFF F7FF 13 Kbyte - System memory
0x1FFF F800 - Ox1FFF F80F 2 x 8 byte - Option byte
. Main flash memory space of STM32F03x and STM32F04x devices is limited to sector 7.
2. STM32F03x and STM32F05xdevices.
STM32F04x devices.
Kys RM0091 Rev 10 57/1017

Embedded flash memory RM0091

Table 5. Flash memory organization (STM32F07x, STM32F09x devices)

Flash area Flash memory addresses Size (byte) Name Description

0x0800 0000 - 0x0800 07FF 2 Kbytes Page 0
Sector 0

0x0800 0800 - 0x0800 OFFF 2 Kbytes Page 1

Main flash 0x0801 FOO0O - 0x0801 F7FF 2 Kbytes Page 62 Sector 3101

memory 0x0801 F800 - 0x0801 FFFF 2 Kbytes Page 63

0x0803 FO00 - 0x0803 F7FF 2 Kbytes Page 126 -
0x0803 F800 - 0x0803 FFFF 2 Kbytes Page 127 -
0x1FFF C800 - OX1FFF F7FF | 12 Kbytes(® - System memory

'”f‘?)rlr;’:;'on Ox1FFF D800 - Ox1FFF F7FF | 8 Kbytes(®) - System memory
0x1FFF F800 - Ox1FFF F80F 2 x 8 byte - Option byte

1. The main flash memory space of STM32F07x is limited to sector 31.
2. STM32F07x devices only.
3. STM32F09x devices only.

58/1017

Read operations

The embedded flash module can be addressed directly, as a common memory space. Any
data read operation accesses the content of the flash module through dedicated read
senses and provides the requested data.

The instruction fetch and the data access are both done through the same AHB bus. Read
accesses can be performed with the following options managed through the flash access
control register (FLASH_ACR):

e Instruction fetch: Prefetch buffer enabled for a faster CPU execution
e Latency: number of wait states for a correct read operation (from 0 to 1)

Instruction fetch

The Cortex®-MO fetches the instruction over the AHB bus. The prefetch block aims at
increasing the efficiency of instruction fetching.

Prefetch buffer

The prefetch buffer is 3-block wide where each block consists of 4 bytes. The prefetch
blocks are direct-mapped. A block can be completely replaced on a single read to the flash
memory as the size of the block matches the bandwidth of the flash memory.

The implementation of this prefetch buffer makes a faster CPU execution possible as the
CPU fetches one word at a time with the next word readily available in the prefetch buffer.
This implies that the acceleration ratio is of the order of 2, assuming that the code is aligned
at a 32-bit boundary for the jumps.

RM0091 Rev 10 ‘Yl

RM0091

Embedded flash memory

3.2.2

3

However the prefetch buffer has an impact on the performance only when the wait state
number is 1. In the other case (no wait state) the performance remains the same whatever
the prefetch buffer status. There could be some impacts on the power consumption but this
is strongly dependent from the actual application code.

Prefetch controller

The prefetch controller decides to access the flash memory depending on the available
space in the prefetch buffer. The Controller initiates a read request when there is at least
one block free in the prefetch buffer.

The prefetch buffer is usually switched on/off during the initialization routine, while the
microcontroller is running on the internal 8 MHz RC (HSI) oscillator.

Access latency

In order to maintain the control signals to read the flash memory, the ratio of the prefetch
controller clock period to the access time of the flash memory has to be programmed in the
flash access control register with the LATENCY[2:0] bits. This value gives the number of
cycles needed to maintain the control signals of the flash memory and correctly read the
required data. After reset, the value is zero and only one cycle without additional wait states
is required to access the flash memory.

Flash program and erase operations
The STM32F0xx embedded flash memory can be programmed using in-circuit
programming or in-application programming.

The in-circuit programming (ICP) method is used to update the entire contents of the flash
memory, using the SWD protocol or the boot loader to load the user application into the
microcontroller. ICP offers quick and efficient design iterations and eliminates unnecessary
package handling or socketing of devices.

In contrast to the ICP method, in-application programming (IAP) can use any
communication interface supported by the microcontroller (1/Os, USB, CAN, USART, 12C,
SPI, etc.) to download programming data into memory. IAP allows the user to re-program
the flash memory while the application is running. Nevertheless, part of the application has
to have been previously programmed in the flash memory using ICP.

The program and erase operations can be performed over the whole product voltage range.
They are managed through the following seven flash registers:

e Keyregister (FLASH_KEYR)

e Option byte key register (FLASH_OPTKEYR)

e Flash control register (FLASH_CR)

e Flash status register (FLASH_SR)

e Flash address register (FLASH_AR)

e Option byte register (FLASH_OBR)

e Write protection register (FLASH_WRPR)

An ongoing flash memory operation does not block the CPU as long as the CPU does not
access the flash memory.

On the contrary, during a program/erase operation to the flash memory, any attempt to read
the flash memory stalls the bus. The read operation proceeds correctly once the

RMO0091 Rev 10 59/1017

Embedded flash memory RM0091

60/1017

program/erase operation has completed. This means that code or data fetches cannot be
made while a program/erase operation is ongoing.

For program and erase operations on the flash memory (write/erase), the internal RC
oscillator (HSI) must be ON.

Unlocking the flash memory

After reset, the flash memory is protected against unwanted write or erase operations. The
FLASH_CR register is not accessible in write mode, except for the OBL_LAUNCH bit, used
to reload the option bits. An unlocking sequence should be written to the FLASH_KEYR
register to open the access to the FLASH_CR register. This sequence consists of two write
operations:

e Write KEY1 = 0x45670123

e Write KEY2 = OXxCDEF89AB
Any wrong sequence locks up the FLASH_CR register until the next reset.

In the case of a wrong key sequence, a bus error is detected and a Hard Fault interrupt is
generated. This is done after the first write cycle if KEY1 does not match, or during the
second write cycle if KEY1 has been correctly written but KEY2 does not match.

The FLASH_CR register can be locked again by user software by writing the LOCK bit in the
FLASH_CR register to 1.

For code example refer to the Appendix section A.2.1: Flash memory unlocking sequence.

Main flash memory programming

The main flash memory can be programmed 16 bits at a time. The program operation is
started when the CPU writes a half-word into a main flash memory address with the PG bit
of the FLASH_CR register set. Any attempt to write data that are not half-word long results
in a bus error generating a Hard Fault interrupt.

3

RMO0091 Rev 10

RM0091

Embedded flash memory

3

Figure 3. Programming procedure

Read LOCK bit in
FLASH_CR

Yes

LOCK bit in FLASH_CR Perform unlock sequence

Write PG bit in FLASH_CR to 1

Perform half-word write at the
desired address

q

)

Yes

BSY bit in FLASH_SR
=1

Check the programmed value
by reading the programmed
address

MS19220V1

The flash memory interface preliminarily reads the value at the addressed main flash
memory location and checks that it has been erased. If not, the program operation is
skipped and a warning is issued by the PGERR bit in FLASH_SR register. The only
exception to this is when 0x0000 is programmed. In this case, the location is correctly
programmed to 0x0000 and the PGERR bit is not set.

If the addressed main flash memory location is write-protected by the FLASH_WRPR
register, the program operation is skipped and a warning is issued by the WRPRTERR bit in
the FLASH_SR register. The end of the program operation is indicated by the EOP bit in the
FLASH_SR register.

RMO0091 Rev 10 61/1017

Embedded flash memory RM0091

The main flash memory programming sequence in standard mode is as follows:

1. Check that no main flash memory operation is ongoing by checking the BSY bit in the
FLASH_SR register.

Set the PG bit in the FLASH_CR register.
Perform the data write (half-word) at the desired address.
Wait until the BSY bit is reset in the FLASH_SR register.

Check the EOP flag in the FLASH_SR register (it is set when the programming
operation has succeeded), and then clear it by software.

o e

Note: The registers are not accessible in write mode when the BSY bit of the FLASH_SR register
is set.

For code example refer to the Appendix section A.2.2: Main Flash programming sequence.

Flash memory erase

The flash memory can be erased page by page or completely (mass erase).

Page erase

To erase a page, the procedure below should be followed:

1. Check that no flash memory operation is ongoing by checking the BSY bit in the
FLASH_CR register.

2. Setthe PER bitin the FLASH_CR register.
3. Program the FLASH_AR register to select a page to erase.
4. Setthe STRT bit in the FLASH_CR register (see note below).
5. Wait for the BSY bit to be reset.
6. Check the EOP flag in the FLASH_SR register (it is set when the erase operation has
succeeded).
7. Clear the EOP flag.
Note: The software should start checking if the BSY bit equals “0” at least one CPU cycle after

setting the STRT bit.

For code example refer to the Appendix section A.2.3: Page erase sequence.

3

62/1017 RMO0091 Rev 10

RM0091 Embedded flash memory

Figure 4. Flash memory Page erase procedure

Read LOCK bit in
FLASH_CR

Yes
Perform unlock sequence

LOCK bit in FLASH_CR

Write PER bit in FLASH_CR

:

Write into FAR an address
within the page to erase

'

Write STRT bit in FLASH_CR
to1

<

BSY bitin FLASH_SR
=1

Check the page is erased by
reading all the addresses in
the page

MS19221V1

63/1017

3

RMO0091 Rev 10

Embedded flash memory RM0091

Note:

64/1017

Mass erase

The mass erase command can be used to completely erase the pages of the main flash
memory. The information block is unaffected by this procedure. The following sequence is
recommended:

1.

ok wbd

6.

Check that no flash memory operation is ongoing by checking the BSY bit in the
FLASH_SR register.

Set the MER bit in the FLASH_CR register.
Set the STRT bit in the FLASH_CR register.
Wait until the BSY bit is reset in the FLASH_SR register.

Check the EOP flag in the FLASH_SR register (it is set when the programming
operation has succeeded).

Clear the EOP flag.

The software should start checking if the BSY bit equals “0” at least one CPU cycle after
setting the STRT bit.

For code example refer to the Appendix section A.2.4: Mass erase sequence.

Figure 5. Flash memory mass erase procedure

Read LOCK bit in
FLASH_CR

Yes

LOCK bit in FLASH_CR Perform unlock sequency

Write MER bit
in FLASH_CR to 1

Write STRT bit in FLASH_CR
to1

e

BSY bit in
FLASH_SR
=1

Yes

Check the erase operation by
reading all the addresses in
the user memory

MS19222V1

3

RMO0091 Rev 10

RM0091

Embedded flash memory

3

Option byte programming

The option byte are programmed differently from normal user addresses. The number of
option byte is limited to 8 (1, 2 or 4 for write protection, 1 for read protection, 1 for hardware
configuration and 2 free byte for user data). After unlocking the flash access, the user has to
authorize the programming of the option byte by writing the same set of KEYS (KEY1 and
KEY2) to the FLASH_OPTKEYR register to set the OPTWRE bit in the FLASH_CR register
(refer to Unlocking the flash memory for key values). Then the user has to set the OPTPG
bit in the FLASH_CR register and perform a half-word write operation at the desired flash
address.

The value of the addressed option byte is first read to check it is really erased. If not, the
program operation is skipped and a warning is issued by the WRPRTERR bit in the
FLASH_SR register. The end of the program operation is indicated by the EOP bit in the
FLASH_SR register.

The option byte is automatically complemented into the next flash memory address before
the programming operation starts. This guarantees that the option byte and its complement
are always correct.

The sequence is as follows:

1. Check that no flash memory operation is ongoing by checking the BSY bit in the
FLASH_SR register.

Unlock the OPTWRE bit in the FLASH_CR register.
Set the OPTPG bit in the FLASH_CR register.
Write the data (half-word) to the desired address.
Wait for the BSY bit to be reset.

Read the programmed value and verify.

oo s wN

For code example refer to the Appendix section A.2.6: Option byte programming sequence.

When the flash memory read protection option is changed from protected to unprotected, a
mass erase of the main flash memory is performed before reprogramming the read
protection option. If the user wants to change an option other than the read protection
option, then the mass erase is not performed. The erased state of the read protection option
byte protects the flash memory.

Erase procedure

The option byte erase sequence is as follows:

1. Check that no flash memory operation is ongoing by reading the BSY bit in the
FLASH_SR register

Unlock the OPTWRE bit in the FLASH_CR register
Set the OPTER bit in the FLASH_CR register

Set the STRT bit in the FLASH_CR register

Wait for the BSY bit to be reset

Read the erased option byte and verify

oo s 0N

For code example refer to the Appendix section A.2.7: Option byte erasing sequence.

RMO0091 Rev 10 65/1017

Embedded flash memory RM0091

3.3

3.3.1

Note:

66/1017

Memory protection

The user area of the flash memory can be protected against read by untrusted code. The
pages of the flash memory can also be protected against unwanted write due to loss of
program counter contexts. The write-protection granularity is one sector (four pages).

Read protection

The read protection is activated by setting the RDP option byte and then, by applying a
system reset to reload the new RDP option byte.

If the read protection is set while the debugger is still connected through SWD, apply a POR
(power-on reset) instead of a system reset.

There are three levels of read protection from no protection (level 0) to maximum protection
or no debug (level 2). Refer to Table 7: Access status versus protection level and execution
modes.

The flash memory is protected when the RDP option byte and its complement contain the
pair of values shown in Table 6.

Table 6. Flash memory read protection status

RDP byte value RDP complement value Read protection level
OXAA 0x55 Levgl 0 (S.T production
configuration)
Any value
Any value (not necessarily complementary) Level 1
except OxAA or 0xCC except 0x55 and 0x33
0xCC 0x33 Level 2

The System memory area is read accessible whatever the protection level. It is never
accessible for program/erase operation

Level 0: no protection
Read, program and erase operations into the main flash memory area are possible.

The option byte are as well accessible by all operations.

Level 1: read protection

This is the default protection level when RDP option byte is erased. It is defined as well
when RDP value is at any value different from OxAA and 0xCC, or even if the complement is
not correct.

e User mode: Code executing in user mode can access main flash memory and option
byte with all operations.

e Debug, boot RAM and boot loader modes: In debug mode (with SWD) or when code
is running from boot RAM or boot loader, the main flash memory and the backup
registers (RTC_BKPxR in the RTC) are totally inaccessible.

In these modes, even a simple read access generates a bus error and a Hard Fault
interrupt. The main flash memory is program/erase protected to prevent malicious or
unauthorized users from reprogramming any of the user code with a dump routine. Any

RM0091 Rev 10 ‘Yl

RM0091 Embedded flash memory

attempted program/erase operation sets the PGERR flag of flash status register
(FLASH_SR).

When the RPD is reprogrammed to the value 0xAA to move back to Level 0, a mass
erase of the main flash memory is performed and the backup registers (RTC_BKPxR in
the RTC) are reset.

Level 2: no debug

In this level, the protection level 1 is guaranteed. In addition, the CortexM0 debug
capabilities are disabled. Consequently, the debug port (SWD), the boot from RAM (boot
RAM mode) and the boot from System memory (boot loader mode) are no more available.

In user execution mode, all operations are allowed on the main flash memory. On the
contrary, only read and program operations can be performed on the option byte. Option
byte are not accessible for erase operations.

Moreover, the RDP byte cannot be programmed. Thus, the level 2 cannot be removed at all:
it is an irreversible operation. When attempting to program the RDP byte, the protection
error flag WRPRTERR is set in the flash_SR register and an interrupt can be generated.

Note: The debug feature is also disabled under reset.

STMicroelectronics is not able to perform analysis on defective parts on which the level 2
protection has been set.

Table 7. Access status versus protection level and execution modes

User execution Debug / Boot from RAM /
A Protection Boot from System memory
rea level
Read Write Erase Read Write Erase
Main flash 1 Yes Yes Yes No No No®
memory 2 Yes Yes Yes N/A(M) N/A(MT) N/AM
System 1 Yes®) No No Yes No No
memory(?) 2 Yes® No No N/AM) N/A(MT) N/AM
o 1 Yes Yes®) Yes Yes(®) Yes(®*)®) Yes
ption byte
2 Yes Yes® No N/A() N/A(MT N/AM
Backup 1 Yes Yes N/A No No No
: 7
registers(”) 2 Yes Yes N/A NAD T NAD A

1. When the protection level 2 is active, the Debug port, the boot from RAM and the boot from System memory are
disabled.

The system memory is only read-accessible, whatever the protection level (0, 1 or 2) and execution mode.

Under RDP level 1 and level 2, the bootloader can be accessed by a jump to it. However it does not execute any
command other than GetCmd/GetID/GetVersion.

The main flash memory is erased when the RDP option byte is changed from level 1 to level 0 (0xAA).

When the RDP level 1 is active, the embedded boot loader does not allow to read or write the Option byte, except to
remove the RDP protection (move from level 1 to level 0).

All option byte can be programmed, except the RDP byte.

These registers are reset when moving from RDP level 1 to level 0.

‘7] RM0091 Rev 10 67/1017

Embedded flash memory RM0091

Note:

3.3.2

3.3.3

68/1017

Changing read protection level

It is easy to move from level O to level 1 by changing the value of the RDP byte to any value
(except OxCC).

By programming the 0xCC value in the RDP byte, it is possible to go to level 2 either directly
from level O or from level 1.

On the contrary, the change to level 0 (no protection) is not possible without a main flash
memory Mass erase operation. This Mass erase is generated as soon as 0xAA is
programmed in the RDP byte.

When the mass erase command is used, the backup registers (RTC_BKPxR in the RTC)
are also reset.

To validate the protection level change, the option bytes must be reloaded through the
“OBL_LAUNCH?” bit in flash control register.

Write protection

The write protection is implemented with a granularity of one sector. It is activated by
configuring the WRPx option byte, and then by reloading them by setting the OBL_LAUNCH
bit in the FLASH_CR register.

If a program or an erase operation is performed on a protected sector, the flash memory
returns a WRPRTERR protection error flag in the flash memory Status Register
(FLASH_SR).

Write unprotection

To disable the write protection, two application cases are provided:
e Case 1: Read protection disabled after the write unprotection:

— Erase the entire option byte area by using the OPTER bit in the flash memory
control register (FLASH_CR).

— Program the code OxAA in the RDP byte to unprotect the memory. This operation
forces a mass erase of the main flash memory.

— Set the OBL_LAUNCH bit in the flash control register (FLASH_CR) to reload the
option byte (and the new WRP[1:0] byte), and to disable the write protection.

e Case 2: Read protection maintained active after the write unprotection, useful for in-

application programming with a user boot loader:

— Erase the entire option byte area by using the OPTER bit in the flash memory
control register (FLASH_CR).

— Set the OBL_LAUNCH bit in the flash control register (FLASH_CR) to reload the
option byte (and the new WRP[1:0] byte), and to disable the write protection.

Option byte write protection

The option byte are always read-accessible and write-protected by default. To gain write
access (Program/Erase) to the option byte, a sequence of keys (same as for lock) has to be
written into the OPTKEYR. A correct sequence of keys gives write access to the option byte
and this is indicated by OPTWRE in the FLASH_CR register being set. Write access can be
disabled by resetting the bit through software.

RM0091 Rev 10 ‘Yl

RM0091 Embedded flash memory

3.4 Flash interrupts

Table 8. Flash interrupt request

Interrupt event Event flag Enable control bit
End of operation EOP EOPIE
Write protection error WRPRTERR ERRIE
Programming error PGERR ERRIE
3.5 Flash register description

The flash memory registers have to be accessed by 32-bit words (half-word and byte

accesses are not allowed).

3.5.1 Flash access control register (FLASH_ACR)

Address offset: 0x00
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PRFT | PRFT _
BS BE LATENCY[2:0]
r w w | rw | rw

Bits 31:6 Reserved, must be kept at reset value.

Bit 5 PRFTBS: Prefetch buffer status
This bit provides the status of the prefetch buffer.
0: Prefetch buffer is disabled
1: Prefetch buffer is enabled

Note: The prefetch status is set to 1 as soon a first fetch request is done

Bit 4 PRFTBE: Prefetch buffer enable
0: Prefetch is disabled
1: Prefetch is enabled

Bit 3 Reserved, must be kept at reset value.

Bits 2:0 LATENCY[2:0]: Latency

These bits represent the ratio of the SYSCLK (system clock) period to the flash access time.

000: Zero wait state, if SYSCLK < 24 MHz
001: One wait state, if 24 MHz < SYSCLK <48 MHz

3

RMO0091 Rev 10

69/1017

Embedded flash memory

RM0091

3.5.2 Flash key register (FLASH_KEYR)
Address offset: 0x04
Reset value: OxXXXX XXXX
All these register bits are write-only and return a 0 when read.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
FKEY[31:16]

w | w | w | w | w | w | w | w | w | w | w | w | w | w | w | w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FKEY[15:0]

w | w | w | w | w | w | w | w | w | w | w | w | w | w | w | w

Bits 31:0 FKEY: Flash key
These bits represent the keys to unlock the flash.
3.5.3 Flash option key register (FLASH_OPTKEYR)

Address offset: 0x08

Reset value: OxXXXX XXXX

All these register bits are write-only and return a 0 when read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
OPTKEY[31:16]

w | w | w | w | w | w | w | w | w | w | w | w | w | w | w | w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OPTKEY[15:0]

w | w | w | w | w | w | w | w | w | w | w | w | w | w | w | w

70/1017

Bits 31:0 OPTKEY: Option byte key
These bits represent the keys to unlock the OPTWRE.

RMO0091 Rev 10

3

RM0091 Embedded flash memory

3.54 Flash status register (FLASH_SR)

Address offset: 0x0C
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
WRPRT PG
EOP ERR ERR BSY
rc_wl | rc_w1 rc_w1 r

Bits 31:6 Reserved, must be kept at reset value.

Bit 5 EOP: End of operation
Set by hardware when a flash operation (programming / erase) is completed.
Reset by writing 1.
Note: EOP is asserted at the end of each successful program or erase operation

Bit4 WRPRTERR: Write protection error
Set by hardware when programming a write-protected address of the flash memory.
Reset by writing 1.

Bit 3 Reserved, must be kept at reset value.

Bit 2 PGERR: Programming error

Set by hardware when an address to be programmed contains a value different from '0OxFFFF'
before programming.

Reset by writing 1.
Note: The STRT bit in the FLASH_CR register should be reset before starting a programming
operation.
Bit 1 Reserved, must be kept at reset value.

Bit0 BSY: Busy

This indicates that a flash operation is in progress. This is set on the beginning of a flash
operation and reset when the operation finishes or when an error occurs.

3.5.5 Flash control register (FLASH_CR)

Address offset: 0x10
Reset value: 0x0000 0080

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

OBL_LAUNCH | EOPIE ERRIE | OPTWRE LOCK | STRT |OPTER|OPTPG MER | PER | PG

w w w w w w w w w w w

Bits 31:14 Reserved, must be kept at reset value.

3

RMO0091 Rev 10 71/1017

Embedded flash memory RM0091

Bit 13 OBL_LAUNCH: Force option byte loading

When set to 1, this bit forces the option byte reloading. This operation generates a system
reset.

0: Inactive
1: Active
Bit 12 EOPIE: End of operation interrupt enable
This bit enables the interrupt generation when the EOP bit in the FLASH_SR register goes to 1.
0: Interrupt generation disabled
1: Interrupt generation enabled
Bit 11 Reserved, must be kept at reset value

Bit 10 ERRIE: Error interrupt enable

This bit enables the interrupt generation on an error when PGERR / WRPRTERR are set in the
FLASH_SR register.

0: Interrupt generation disabled
1: Interrupt generation enabled

Bit9 OPTWRE: Option byte write enable

When set, the option byte can be programmed. This bit is set on writing the correct key
sequence to the FLASH_OPTKEYR register.

This bit can be reset by software
Bit 8 Reserved, must be kept at reset value.

Bit 7 LOCK: Lock

Write to 1 only. When it is set, it indicates that the flash is locked. This bit is reset by hardware
after detecting the unlock sequence.

In the event of unsuccessful unlock operation, this bit remains set until the next reset.

Bit 6 STRT: Start

This bit triggers an ERASE operation when set. This bit is set only by software and reset when
the BSY bit is reset.

Bit5 OPTER: Option byte erase
Option byte erase chosen.

Bit4 OPTPG: Option byte programming
Option byte programming chosen.

Bit 3 Reserved, must be kept at reset value.

Bit2 MER: Mass erase
Erase of all user pages chosen.

Bit 1 PER: Page erase
Page erase chosen.

Bit 0 PG: Programming
Flash programming chosen.

3

72/1017 RMO0091 Rev 10

RM0091 Embedded flash memory
3.5.6 Flash address register (FLASH_AR)
Address offset: 0x14
Reset value: 0x0000 0000
This register is updated by hardware with the currently/last used address. For Page erase
operations, this should be updated by software to indicate the chosen page.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
FAR[31:16]
w | w | w | w | w | w | w | w | w | w | w | w | w | w | w | w
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
FAR[15:0]
w | w | w | w | w | w | w | w | w | w | w | w | w | w | w | w

3.5.7

31

Bits 31:0 FAR: Flash address
Chooses the address to program when programming is selected, or a page to erase when Page
erase is selected.
Note: Write access to this register is blocked when the BSY bit in the FLASH_SR register is set.

Flash Option byte register (FLASH_OBR)

Address offset 0x1C
Reset value: OxXXXX XX0X

The reset value of this register depends on the value programmed in the option byte.

30 29 26 25 24 23 22 21

15

14

13

10

BOOT_
SEL

RAM_
PARITY_
CHECK

VDDA _
MONITOR

nBOOT1

nBOOTO

nRST_
STDBY

nRST_
STOP

RDPRT[1:0]

OPTERR

r

r

r r

3

Bits 31:24 DATA1
Bits 23:16 DATAO

Bits 15:8 User option bytes:
Bit 15: BOOT_SEL (available on STM32F04x and STM32F09x devices only)
Bit 14: RAM_PARITY_CHECK
Bit 13: VDDA_MONITOR
Bit 12: nBOOT1
Bit 11: nBOOTO (available on STM32F04x and STM32F09x devices only)
Bit 10: nRST_STDBY
Bit 9: nRST_STOP
Bit 8: WDG_SW

RMO0091 Rev 10 73/1017

Embedded flash memory

RM0091

3.5.8

Bits 7:3 Reserved, must be kept at reset value.

Bits 2:1 RDPRT[1:0]: Read protection level status
00: Read protection level 0 is enabled (ST production configuration)
01: Read protection level 1 is enabled
11: Read protection level 2 is enabled.

Bit 0 OPTERR: Option byte error

When set, this indicates that the loaded option byte and its complement do not match. The
corresponding byte is set to OxFF in respective FLASH_OBR or FLASH_WRPR register.

Write protection register (FLASH_WRPR)

Address offset: 0x20
Reset value: OxXXXX XXXX

The reset value of this register depends on the value programmed in the option byte.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
WRP[31:16]
- rrr rr ©r &+ [[© [[/|
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
WRP[15:0]

74/1017

Bits 31:0 WRP: Write protect
This register contains the write-protection option byte loaded by the OBL.

3

RMO0091 Rev 10

RM0091 Embedded flash memory

3.5.9 Flash register map

Table 9. Flash interface - Register map and reset values

Off- :
<ot | Redister AR N A R R R R A R S R R R R R L R N R B R R R R
>
A E{
FLASH_ACR L2 O&
0x000 %EI—.’ i
Reset value 0|00 O‘O‘O
FLASH_KEYR FKEY[31:0]
0x004
Reset value X‘X‘X‘X‘X‘X|X‘X‘X|X‘X‘X|X‘X‘X‘X‘X‘X‘X‘X|X|X‘X‘X‘X‘X|X‘X‘X‘X‘X‘X
FLASH
_ OPTKEY[31:0]
0x008 OPTKEYR
Resetvalue | x | x| x [x| x|[x[x|x|[x|x|x|[x|x|x|[x|x|[x|x|x|[x]|x|[x|x|x|x|x|[x]|x|x]|x]|x][|x
14
AR
ol = Xl | >
FLASH_SR O x wl >
0x00C Haol 1Rzl ®
s i
Reset value 0|0 0(0]|0
T
g o x| o
w w| x| =
=1 = x
FLASH_CR HEREEREEE %%8
0x010 | o])
X D_le Wi & ol o
o
Reset value 0|0 0|0 1/0(0]|0 0]0]|0
FLASH_AR FAR[31:0]
0x014
Reset value 0‘0‘0‘0‘0‘0|0‘0 0|0‘0‘0|0‘0‘0‘0 o|jojofofjo|o|OflO|O|jO|OfO|O]|O|O|O
S
w| x
I| O >l —_—
dol':‘—ogO§ 2 x
= = "’>5'_'_'—'c7)“’ = |
FLASH_OBR 2 £ = El€] 88| e P o Fo|w
0x01C o a ol Tl alalk| Kl o o o
O§< cl |l ol pl= [a] (o]
ol & g x| & x
s 2 =
2| >
4
Reset value X‘X‘X‘X‘X‘X|X‘X X|X‘X‘X|X‘X‘X‘XXXXXXXXX X‘XX
FLASH_WRPR WRP[31:0]
0x020
Reset value X‘X‘X‘X‘X‘X|X‘X‘X|X‘X‘X|X‘X‘X‘X‘X‘X‘X‘X|X|X‘X‘X‘X‘X|X‘X‘X‘X‘X‘X

Refer to Section 2.2 on page 46 for the register boundary addresses.

3

RMO0091 Rev 10 75/1017

Option bytes RMO0091

4

Note:

76/1017

Option bytes

There are up to 8 option bytes. They are configured by the end user depending on the
application requirements. As a configuration example, the watchdog may be selected in
hardware or software mode.

A 32-bit word is split up as follows in the option byte.

Table 10. Option byte format

31-24 23-16 15 -8 7-0
C I ted C I ted
omp emente Option byte 1 omp emente Option byte 0
option byte 1 option byte 0

The organization of these bytes inside the information block is as shown in Table 11.

The option byte can be read from the memory locations listed in Table 11 or from the Option
byte register (FLASH_OBR).

The new programmed option byte (user, read/write protection) are not loaded after a system
reset. To reload them, either a POR or setting to '1'the OBL_LAUNCH bit is necessary.

Table 11. Option byte organization

Address [31:24] [23:16] [15:8] [7:0]
O0x1FFF F800 nUSER USER nRDP RDP
Ox1FFF F804 nData1 Data1 nData0 Data0
O0x1FFF F808 nWRP1 WRP1 nWRPO WRPO
Ox1FFF F80C nWRP3 WRP3 nWRP2 WRP2

On every power-on reset, the option byte loader (OBL) reads the information block and
stores the data into the option byte register (FLASH_OBR) and the write protection register
(FLASH_WRPR). During option byte loading, the bit-wise complementarity of the option
byte and its corresponding complemented option byte is verified. In case of failure, an option
byte error (OPTERR) is generated and the corresponding option byte is considered as
OxFF. If the option byte and its complemented option byte are both equal to OxFF (Electrical
Erase state) the option byte error is not generated.

3

RMO0091 Rev 10

RMO0091 Option bytes
4.1 Option byte description
411 User and read protection option byte
Flash memory address: Ox1FFF F800
ST production value: OXO0FF 55AA
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
USER
RAM_ | \ppA_ nRST_ | nRST_ | WDG_
nUSER BOOT_SEL Pé’-\'_ITé'EYK_ MONITOR nBOOT1| nBOOTO STDBY| sTOP SW
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
nRDP RDP
Bits 31:24 nUSER: User option byte complement
1S7] RM0091 Rev 10 7711017

Option bytes

RM0091

Bits 23:16 USER: User option byte (stored in FLASH_OBR[15:8])

Bits 15:8

Bits 7:0

Bit 23: BOOT_SEL

0: BOOTO signal is defined by nBOOTO option bit

1: BOOTO signal is defined by BOOTO pin value (legacy mode)
Available on STM32F04x and STM32F09x devices only. Considered as “1” on other devices.
Bit 22: RAM_PARITY_CHECK

0: RAM parity check enabled

1: RAM parity check disabled
Bit 21: VDDA_MONITOR

0: Vppa power supply supervisor disabled

1: Vppa power supply supervisor enabled
Bit 20: nBOOT1

Together with the BOOTO signal, it selects the device boot mode. Refer to Section 2.5: Boot
configuration for more details.

Bit 19: nBOOTO

When BOOT_SEL is cleared, nBOOTO bit defines BOOTO signal value used to select the
device boot mode. Refer to Section 2.5: Boot configuration for more details.

Available on STM32F04x and STM32F09x devices only.
Bit 18: nRST_STDBY

0: Reset generated when entering Standby mode.
1: No reset generated.

Bit 17: nRST_STOP

0: Reset generated when entering Stop mode
1: No reset generated

Bit 16: WDG_SW

0: Hardware watchdog
1: Software watchdog

nRDP: Read protection option byte complement

RDP: Read protection option byte

The value of this byte defines the flash memory protection level
O0xAA: level 0 (ST production configuration)
0xXX (except 0xAA & 0xCC): Level 1
0xCC: Level 2

Note: Read protection level status is stored in bits RDPRT[1:0] of the Flash Option byte
register (FLASH_OBR). For more details about read protection, refer to Section 3.3.1:

Read protection.
4.1.2 User data option byte
Flash memory address: Ox1FFF F804
ST production value: 0xO0FF O0FF
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
nData1 Data1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
nData0 Data0
78/1017 RM0091 Rev 10 1S7]

RMO0091 Option bytes

Bits 31:24 nData1: User data byte 1 complement
Bits 23:16 Data1: User data byte 1 value (stored in FLASH_OBR[31:24])

Bits 15:8 nData0: User data byte 0 complement
Bits 7:0 Data0: User data byte 0 value (stored in FLASH_OBR[23:16])

41.3 Write protection option byte

This set of registers is used to write-protect the flash memory. Clearing a bit in WRPx field
(and at the same time setting a corresponding bit in NnWRPXx field) write-protects the given
memory sector.

For STM32F03x, STM32F04x, STM32F05x and STM32F07x devices, WRP bits from 0 to
31 are protecting the flash memory by sector of 4 kB.

For STM32F09x devices, WRP bits from 0 to 30 are protecting the first 124 kB by sector of
4 kB and the bit 31 is protecting the last 132 kB.

Refer to Section 3.3.2: Write protection for more details.

Flash memory address: 0x1FFF F808
ST production value: 0x00FF 00FF

31 30 20 28 27 2 25 24 23 22 21 20 19 18 17 16
nWRP1 WRP1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NWRPO WRPO

Bits 31:24 nWRP1: Flash memory write protection option byte 1 complement
Bits 23:16 WRP1: Flash memory write protection option byte 1 value (stored in FLASH_WRPR[15:8])
Bits 15:8 nWRPO0: Flash memory write protection option byte 0 complement
Bits 7:0 WRPO: Flash memory write protection option byte 0 value (stored in FLASH_WRPR[7:0])

Note: STM32F03x and STM32F04x devices embed WRPO and nWRPO only.

The following Option byte are available on STM32F07x and STM32F09x devices only.

Flash memory address: 0x1FFF F80C
ST production value: 0x00FF 00FF

31 30 20 28 27 2 25 24 23 22 21 20 19 18 17 16
nWRP3 WRP3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NWRP2 WRP2

3

RMO0091 Rev 10 79/1017

Option bytes RMO0091

Bits 31:24 nWRP3: Flash memory write protection option byte 1 complement
Bits 23:16 WRP3: Flash memory write protection option byte 1 value (stored in FLASH_WRPR[15:8])
Bits 15:8 nWRP2: Flash memory write protection option byte 0 complement

Bits 7:0 WRP2: Flash memory write protection option byte 0 value (stored in FLASH_WRPR[7:0])

41.4 Option byte map

The following table summarizes the option bytes.

Table 12. Option byte map and ST production values

Option
offset| OPtion |72 2 % K| £ 8 3| R N5/ 8| 2 25|22/ ¥/ 2|2 |0l el el o) | ol oo
USER
)
w| X
User and o 5 g _ P 5 =
read nUSER ol Z £l ele) nRDP RDP
i = o| »
0x00 protection 5 &l 3 ol 3 '_I o
ol & <« :mf./)m;
S =) x| X
| a Tl <=
§>
STP\;‘;j’u“ec"°”oooooooo111111110101010110101010
User data nData1 Data1 nData0 Data0
0x04 ST production
ol olojo|ofolofolo|1]1|1|1]1]1]1|1]o]|olo]olo]ofoloft]|1|1]1|1]1]1]1
p"n’;:ﬁon nWRP1 WRP1 nWRPO WRPO
0x08 _
STP\:ZﬁJ‘;°"°”oooooooo111111110000000011111111
prg’:’e’:ﬁon NWRP3 WRP3 AWRP2 WRP2
0x0C :
STp\:gﬂj“e"“m00000000111111110000000011111111
80/1017 RM0091 Rev 10 ‘Yl

RM0091

Power control (PWR)

5

5.1

Power control (PWR)

Power supplies

The STM32F0x1/F0x2 subfamily embeds a voltage regulator in order to supply the internal
1.8 V digital power domain, unlike the STM32F0x8 subfamily where the stable 1.8 V must
be delivered by the application.

e The STM32F0x1/FOx2 devices require a 2.0 V - 3.6 V operating supply voltage (Vpp)

and a 2.0 V - 3.6 V analog supply voltage (Vppa)-

e The STM32F0x8 devices require a 1.8 V + 8% operating supply voltage (Vpp), and a
1.65V - 3.6 V analog supply voltage (Vppa)-

The real-time clock (RTC) and backup registers can be powered from the Vgt voltage
when the main Vpp supply is powered off.

Figure 6. Power supply overview

STM32F0x1
. . STM32F0x8
Vppa domain STM32F0x2 Vppa domain
A/D converter A/D converter
Vopa g: D/A converter Vopa g: D/A converter
Vssa Temperature sensor Vssa Temperature sensor
Reset block Reset block
PLL PLL
__________________________ ; g g
: VDDIOZ domain ™ : : VDDIOZ domain ™ :
| | | |
! v) I ! V) I
| Vipioz [t pooz f1,0 ring : | Vipioz [t pooz f,0 ring :
| Vss Ei (selected I/Os) | ! | Vss Ei (selected I/Os) | !
L _i L _i
VDD domain 1.8 V domain VDD domain 1.8 V domain
V V
Vpp [1 2O 1 1/O ring Core Vpp L 2L /0 ring Core
Standby circuitry Memories IWDG Memories
(Wakeup logic,
Vss [IWDG) Digital Vss [Digital
Voltage regulator peripherals peripherals
Low voltage detector NPOR [H
Backup domain Backup domain
LSE crystal 32 kHz oscillator LSE crystal 32 kHz oscillator
N BKP registers ~— | BKP registers
Vear [T RCC BDCR register Vear L1 RCC BDCR register
RTC RTC

MSv33170V2

1.

3

Available only on STM32F04x, STM32F07x and STM32F09x devices.

RMO0091 Rev 10

81/1017

Power control (PWR) RMO0091

5.1.1

5.1.2

51.3

82/1017

Independent A/D and D/A converter supply and reference voltage

To improve conversion accuracy and to extend the supply flexibility, the ADC and the DAC
have an independent power supply that can be separately filtered and shielded from noise
on the PCB.

e The ADC and DAC voltage supply input is available on a separate Vppa pin.
e Anisolated supply ground connection is provided on pin Vgga.

The Vppa supply/reference voltage must be equal or higher than Vpp.

When a single supply is used, Vppa can be externally connected to Vpp, through the
external filtering circuit in order to ensure a noise free Vppp reference voltage.

When Vpp, is different from Vpp, Vppa must always be higher or equal to Vpp. To keep
safe potential difference in between Vppp and Vpp during power-up/power-down, an
external Shottky diode may be used between Vpp and Vppa. Refer to the datasheet for the
maximum allowed difference.

Independent 1/O supply rail

For better supply flexibility on STM32F04x, STM32F07x and STM32F09x devices, portions
of the 1/Os are supplied from a separate supply rail. Power supply for this rail can range from
1.65 to 3.6 V and is provided externally through the VDDIO2 pin. The Vpp o, voltage level is
completely independent from Vpp or Vppa, but it must not be provided without a valid
operating supply on the Vpp pin. Refer to the pinout diagrams or tables in related device
datasheets for concerned I/Os list.

The Vpp o2 supply is monitored and compared with the internal reference voltage (VrerinT)-
When the Vpp g2 is below this threshold, all the 1/Os supplied from this rail are disabled by
hardware. The output of this comparator is connected to EXTI line 31 and it can be used to
generate an interrupt.

Battery backup domain

To retain the content of the Backup registers and supply the whole RTC domain when Vppis
turned off, Vgat pin can be connected to an optional standby voltage supplied by a battery
or by another source.

The Vgat pin powers the RTC unit, the LSE oscillator and the PC13 to PC15 IOs, allowing
the RTC to operate even when the main power supply is turned off. The switch to the Vgar
supply is controlled by the Power Down Reset embedded in the Reset block or (on
STM32F0x8 devices) by the external NPOR signal.

Warning: During trstrEMPO (temporization at Vpp startup) or after a PDR is
detected, the power switch between Vgar and Vpp remains connected
to VBAT'

During the startup phase, if Vpp is established in less than tgrsTTEMPO
(Refer to the datasheet for the value of tgsTrEMPO) @nd Vpp > Vgar +
0.6 V, a current may be injected into Vgt through an internal diode
connected between Vpp and the power switch (Vgat)-

If the power supply/battery connected to the Vgar pin cannot support

RM0091 Rev 10 ‘Yl

RM0091

Power control (PWR)

Note:

5.1.4

Note:

5.2

5.21

3

this current injection, it is strongly recommended to connect an
external low-drop diode between this power supply and the Vgar pin.

If no external battery is used in the application, it is recommended to connect Vgar
externally to Vpp with a 100 nF external ceramic decoupling capacitor (for more details refer
to AN4080).

When the RTC domain is supplied by Vpp (analog switch connected to Vpp), the following

functions are available:

e PC13, PC14 and PC15 can be used as GPIO pins

e PC13, PC14 and PC15 can be configured by RTC or LSE (refer to Section 25.4: RTC
functional description on page 591)

Due to the fact that the analog switch can transfer only a limited amount of current (3 mA),
the use of GPIOs PC13 to PC15 in output mode is restricted: the speed has to be limited to
2 MHz with a maximum load of 30 pF and these I0s must not be used as a current source
(e.g. to drive an LED).

When the RTC domain is supplied by Vgar (analog switch connected to Vgar because Vpp
is not present), the following functions are available:

e PC13, PC14 and PC15 can be controlled only by RTC or LSE (refer to Section 25.4:
RTC functional description on page 591)

Voltage regulator
The voltage regulator is always enabled after Reset. It works in three different modes
depending on the application modes.

e In Run mode, the regulator supplies full power to the 1.8 V domain (core, memories
and digital peripherals).

¢ In Stop mode the regulator supplies low-power to the 1.8 V domain, preserving
contents of registers and SRAM

e In Standby Mode, the regulator is powered off. The contents of the registers and SRAM
are lost except for the Standby circuitry and the RTC domain.

In STM32F0x8 devices, the voltage regulator is bypassed and the microcontroller must be
powered from a nominal Vpp = 1.8 V 8% supply.

Power supply supervisor

Power on reset (POR) / power down reset (PDR)

STM32F0x1xx and STM32F0x2xx devices feature integrated power-on reset (POR) and
power-down reset (PDR) circuits, which are always active and ensure proper operation
above a threshold of 2 V.

RMO0091 Rev 10 83/1017

Power control (PWR) RMO0091

5.2.2

84/1017

The devices remain in Reset mode when the monitored supply voltage is below a specified

threshold, Vpgor/ppr, Without the need for an external reset circuit.

e The POR monitors only the Vpp supply voltage. During the startup phase Vppa must
arrive first and be greater than or equal to Vpp

e The PDR monitors both the Vpp and Vppa supply voltages. However, the Vppp power
supply supervisor can be disabled (by programming a dedicated option bit
Vppa_MoniTor) to reduce the power consumption if the application is designed to
make sure that Vppp is higher than or equal to Vpp.

For more details on the power on / power down reset threshold, refer to the electrical
characteristics section in the datasheet.

Figure 7. Power on reset/power down reset waveform

A Voo/Vbpa

' 40 mV
. hysteresis

. Temporization
' tRsTTEMPO

Reset :

! ' MS31444V2

External NPOR signal

In STM32F0x8 devices, the PB2 I/0O (or PB1 on small packages) is not available and is
replaced by the NPOR functionality used for power on reset.

To guarantee a proper power on and power down reset to the device, the NPOR pin must be
held low until Vpp is stable or before turning off the supply. When Vpp is stable, the reset
state can be exited by putting the NPOR pin in high impedance. The NPOR pin has an
internal pull-up connected to Vppa.

Programmable voltage detector (PVD)

STM32F0x1xx and STM32F0x2xx can use the PVD to monitor the Vpp power supply by
comparing it to a threshold selected by the PLS[2:0] bits in the Power control register
(PWR_CR).

The PVD is enabled by setting the PVDE bit.

APVDO flag is available, in the Power control/status register (PWR_CSR), to indicate if Vpp
is higher or lower than the PVD threshold. This event is internally connected to the EXTI
line16 and can generate an interrupt if enabled through the EXTI registers. The PVD output
interrupt can be generated when Vpp drops below the PVD threshold and/or when Vpp

RM0091 Rev 10 ‘Yl

RMO0091 Power control (PWR)

rises above the PVD threshold depending on EXTI line16 rising/falling edge configuration.
As an example the service routine could perform emergency shutdown tasks.

Figure 8. PVD thresholds

VDD
<0 N £
Vpyp threshold 100 mV
______________________________ E___v_h_y§t_ere5|s
PVD output — 17
MS31445V2
5.3 Low-power modes

By default, the microcontroller is in Run mode after a system or a power Reset. Several low-
power modes are available to save power when the CPU does not need to be kept running,
for example when waiting for an external event. It is up to the user to select the mode that
gives the best compromise between low-power consumption, short startup time and
available wake-up sources.

The device features three low-power modes:

e Sleep mode (CPU clock off, all peripherals including Cortex®-M0 core peripherals like
NVIC, SysTick, etc. are kept running)

e Stop mode (all clocks are stopped)

e Standby mode (1.8V domain powered-off)

In addition, the power consumption in Run mode can be reduce by one of the following
means:

e Slowing down the system clocks

e Gating the clocks to the APB and AHB peripherals when they are unused.

3

RMO0091 Rev 10 85/1017

Power control (PWR) RMO0091
Table 13. Low-power mode summary
Effecton
Effecton 1.8V Vpp Voltage
Mode name Entry Wake-up domain clocks | domain regulator
clocks
Sleep WEFI Any interrupt CPU clock OFF
(Sleep now or no effect on other None ON
Sleep-on - WFE Wake-up event clocks or analog
exit) clock sources
Any EXTl line
e O or
PDDS and LPDS Specifi 9 power mode
Sto bits + pectlic i (depends on
P SLEEPDEEP bit | communication Power control
+ WFI or WFE perlphgrals on HSI and register
reception events | Al 1.8V domain | HSE (PWR_CR))
(CEC, USART, clocks OFF oscillators -
12C) OFF
WKUP pin rising
PDDS bit + edge, RTC alarm,
Standby SLEEPDEEP bit | external reset in OFF
+ WFI or WFE NRST pin,
IWDG reset

Caution:

On STM32F0x8 devices, the Stop mode is available, but it is meaningless to distinguish

between voltage regulator in low-power mode and voltage regulator in Run mode because
the regulator is not used and the core is supplied directly from an external source.

Consequently, the Standby mode is not available on those devices.

5.3.1

Slowing down system clocks

In Run mode the speed of the system clocks (SYSCLK, HCLK, PCLK) can be reduced by
programming the prescaler registers. These prescalers can also be used to slow down
peripherals before entering Sleep mode.

For more details refer to Section 6.4.2: Clock configuration register (RCC_CFGR).

86/1017

RMO0091 Rev 10

3

RM0091

Power control (PWR)

5.3.2

5.3.3

3

Peripheral clock gating

In Run mode, the AHB clock (HCLK) and the APB clock (PCLK) for individual peripherals
and memories can be stopped at any time to reduce power consumption.

To further reduce power consumption in Sleep mode the peripheral clocks can be disabled
prior to executing the WFI or WFE instructions.

Peripheral clock gating is controlled by the AHB peripheral clock enable register
(RCC_AHBENR), the APB peripheral clock enable register 2 (RCC_APB2ENR) and the
APB peripheral clock enable register 1 (RCC_APB1ENR).

Sleep mode

Entering Sleep mode

The Sleep mode is entered by executing the WFI (Wait For Interrupt) or WFE (Wait for
Event) instructions. Two options are available to select the Sleep mode entry mechanism,
depending on the SLEEPONEXIT bit in the Cortex®-MO0 System Control register:

e Sleep-now: if the SLEEPONEXIT bit is cleared, the MCU enters Sleep mode as soon
as WFI or WFE instruction is executed.

e Sleep-on-exit: if the SLEEPONEXIT bit is set, the MCU enters Sleep mode as soon as
it exits the lowest priority ISR.
In the Sleep mode, all I/O pins keep the same state as in the Run mode.

Refer to Table 14 and Table 15 for details on how to enter Sleep mode.

Exiting Sleep mode

If the WFI instruction is used to enter Sleep mode, any peripheral interrupt acknowledged by
the nested vectored interrupt controller (NVIC) can wake up the device from Sleep mode.

If the WFE instruction is used to enter Sleep mode, the MCU exits Sleep mode as soon as
an event occurs. The wake-up event can be generated either by:

e enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the Cortex®-M0 System Control register. When the MCU
resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ
channel pending bit (in the NVIC interrupt clear pending register) must be cleared.

e or configuring an external or internal EXT]I line in event mode. When the CPU resumes
from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
IRQ channel pending bit as the pending bit corresponding to the event line is not set.

This mode offers the lowest wake-up time as no time is wasted in interrupt entry/exit.

Refer to Table 14 and Table 15 for more details on how to exit Sleep mode.

RMO0091 Rev 10 87/1017

Power control (PWR)

RM0091

5.3.4

88/1017

Table 14. Sleep-now

Sleep-now mode

Description

WFI (Wait for Interrupt) or WFE (Wait for Event) while:
— SLEEPDEEP = 0 and

Mod t
ode entry _ SLEEPONEXIT =0
Refer to the Cortex®-M0 System Control register.
If WFI was used for entry:
. Interrupt: Refer to Table 36: Vector table
Mode exit

If WFE was used for entry
Wake-up event: Refer to Section 11.2.3: Event management

Wake-up latency

None

Table 15. Sleep-on-exit

Sleep-on-exit

Description

WEFI (wait for interrupt) while:
— SLEEPDEEP =0 and

M
ode entry — SLEEPONEXIT = 1

Refer to the Cortex®-M0 System Control register.
Mode exit Interrupt: Refer to Table 36: Vector table.

Wake-up latency

None

Stop mode

The Stop mode is based on the Cortex®-M0 deep sleep mode combined with peripheral
clock gating. The voltage regulator can be configured either in normal or low-power mode.
In Stop mode, all clocks in the 1.8 V domain are stopped, the PLL, the HSI and the HSE
oscillators are disabled. SRAM and register contents are preserved.

In the Stop mode, all I/O pins keep the same state as in the Run mode.

Entering Stop mode

Refer to Table 16 for details on how to enter the Stop mode.

To further reduce power consumption in Stop mode, the internal voltage regulator can be put
in low-power mode. This is configured by the LPDS bit of the Power control register

(PWR_CR).

If Flash memory programming is ongoing, the Stop mode entry is delayed until the memory

access is finished.

If an access to the APB domain is ongoing, The Stop mode entry is delayed until the APB

access is finished.

In Stop mode, the following features can be selected by programming individual control bits:
¢ Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by

hardware option. Once started it cannot be stopped except by a Reset. See

Section 23.3: IWDG functional description.

RMO0091 Rev 10

S74

RM0091

Power control (PWR)

3

e real-time clock (RTC): this is configured by the RTCEN bit in the RTC domain control
register (RCC_BDCR)

¢ Internal RC oscillator (LSI): this is configured by the LSION bit in the Control/status
register (RCC_CSR).

e External 32.768 kHz oscillator (LSE): this is configured by the LSEON bit in the RTC
domain control register (RCC_BDCR).

The ADC or DAC can also consume power during Stop mode, unless they are disabled
before entering this mode. Refer to ADC control register (ADC_CR) and DAC control
register (DAC_CR) for details on how to disable them.

Exiting Stop mode

Refer to Table 16 for more details on how to exit Stop mode.

When exiting Stop mode by issuing an interrupt or a wake-up event, the HSI oscillator is
selected as system clock.

When the voltage regulator operates in low-power mode, an additional startup delay is
incurred when waking up from Stop mode. By keeping the internal regulator ON during Stop
mode, the consumption is higher although the startup time is reduced.

Table 16. Stop mode

Stop mode

Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

— Set SLEEPDEEP bit in Cortex®-M0 System Control register

— Clear PDDS bit in Power Control register (PWR_CR)

— Select the voltage regulator mode by configuring LPDS bit in PWR_CR

Note: To enter Stop mode, all EXTI line pending bits (in Pending register
(EXTI_PR)), all peripherals interrupt pending bits and RTC Alarm flag must
be reset. Otherwise, the Stop mode entry procedure is ignored and
program execution continues.

If the application needs to disable the external oscillator (external clock)
before entering Stop mode, the system clock source must be first switched
to HSI and then clear the HSEON bit.

Otherwise, if before entering Stop mode the HSEON bit is kept at 1, the
security system (CSS) feature must be enabled to detect any external
oscillator (external clock) failure and avoid a malfunction when entering
Stop mode.

Mode exit

If WFI was used for entry:

— Any EXTI line configured in Interrupt mode (the corresponding EXTI
Interrupt vector must be enabled in the NVIC).

— Some specific communication peripherals (CEC, USART, 12C) interrupts,
when programmed in wake-up mode (the peripheral must be
programmed in wake-up mode and the corresponding interrupt vector
must be enabled in the NVIC).

Refer to Table 36: Vector table.

If WFE was used for entry:

Any EXTI line configured in event mode. Refer to Section 11.2.3: Event
management on page 218

Wake-up latency

HSI wake-up time + regulator wake-up time from Low-power mode

RMO0091 Rev 10 89/1017

Power control (PWR) RMO0091

5.3.5

Caution:

90/1017

Standby mode

The Standby mode allows to achieve the lowest power consumption. It is based on the
Cortex®-M0 deepsleep mode, with the voltage regulator disabled. The 1.8 V domain is
consequently powered off. The PLL, the HSI oscillator and the HSE oscillator are also
switched off. SRAM and register contents are lost except for registers in the RTC domain
and Standby circuitry (see Figure 6).

The Standby mode is not available on STM32F0x8 devices.

Entering Standby mode
Refer to Table 17 for more details on how to enter Standby mode.

In Standby mode, the following features can be selected by programming individual control
bits:
e Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a reset. See
Section 23.3: IWDG functional description.

e Real-time clock (RTC): this is configured by the RTCEN bit in the RTC domain control
register (RCC_BDCR).

e Internal RC oscillator (LSI): this is configured by the LSION bit in the Control/status
register (RCC_CSR).

e External 32.768 kHz oscillator (LSE): this is configured by the LSEON bit in the RTC
domain control register (RCC_BDCR).

Exiting Standby mode

The microcontroller exits the Standby mode when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the enabled WKUPX pins or an RTC event occurs. All
registers are reset after wake-up from Standby except for Power control/status register
(PWR_CSR).

After waking up from Standby mode, program execution restarts in the same way as after a
Reset (boot pin sampling, option bytes loading, reset vector is fetched, etc.). The SBF status
flag in the Power control/status register (PWR_CSR) indicates that the MCU was in Standby
mode.

Refer to Table 17 for more details on how to exit Standby mode.

Table 17. Standby mode

Standby mode Description

WFI (Wait for Interrupt) or WFE (Wait for Event) while:
— Set SLEEPDEEP in Cortex®-M0 System Control register

Mode ent
i — Set PDDS bit in Power Control register (PWR_CR)
— Clear WUF bit in Power Control/Status register (PWR_CSR)
Mode exit WKUP pin rising edge, RTC alarm event’s rising edge, external Reset in
NRST pin, IWDG Reset.
Wake-up latency Reset phase

3

RMO0091 Rev 10

RM0091

Power control (PWR)

5.3.6

3

I/0 states in Standby mode

In Standby mode, all I/O pins are high impedance except:
e Reset pad (still available)

e PC13, PC14 and PC15 if configured by RTC or LSE
¢ WKUPX pins

Debug mode

By default, the debug connection is lost if the application puts the MCU in Stop or Standby
mode while the debug features are used. This is due to the fact that the Cortex®-MO core is
no longer clocked.

However, by setting some configuration bits in the DBGMCU_CR register, the software can
be debugged even when using the low-power modes extensively.

Auto-wake-up from low-power mode

The RTC can be used to wake-up the MCU from low-power mode by means of the RTC
alarm.from low-power mode without depending on an external interrupt (Auto-wake-up
mode). The RTC provides a programmable time base for waking up from Stop or Standby
mode at regular intervals. For this purpose, two of the three alternative RTC clock sources
can be selected by programming the RTCSEL][1:0] bits in the RTC domain control register
(RCC_BDCR):
e Low-power 32.768 kHz external crystal oscillator (LSE OSC)
This clock source provides a precise time base with very low-power consumption (less
than 1 yA added consumption in typical conditions)
e Low-power internal RC oscillator (LSI)
This clock source has the advantage of saving the cost of the 32.768 kHz crystal. This
internal RC oscillator is designed to add minimum power consumption.

To wake-up from Stop mode with an RTC alarm event, it is necessary to:
e Configure the EXTI Line 17 to be sensitive to rising edge
e Configure the RTC to generate the RTC alarm

To wake-up from Standby mode, there is no need to configure the EXTI Line 17.

RMO0091 Rev 10 91/1017

Power control (PWR) RMO0091

54 Power control registers

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

5.4.1 Power control register (PWR_CR)

Address offset: 0x00
Reset value: 0x0000 0000 (reset by wake-up from Standby mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
DBP PLS[2:0] PVDE | CSBF | CWUF | PDDS | LPDS

w w ‘ w ‘ w w rc_wl | rc_wi w w

Bits 31:9 Reserved, must be kept at reset value.

Bit 8 DBP: Disable RTC domain write protection.
In reset state, the RTC and backup registers are protected against parasitic write access. This
bit must be set to enable write access to these registers.
0: Access to RTC and Backup registers disabled
1: Access to RTC and Backup registers enabled

Bits 7:5 PLS[2:0]: PVD level selection.
These bits are written by software to select the voltage threshold detected by the Power
Voltage Detector.
Once the PVD_LOCK is enabled in the SYSCFG configuration register 2 (SYSCFG_CFGR?2),
the PLS[2:0] bits cannot be programmed anymore.
000: PVD threshold 0
001: PVD threshold 1
010: PVD threshold 2
011: PVD threshold 3
100: PVD threshold 4
101: PVD threshold 5
110: PVD threshold 6
111: PVD threshold 7
Refer to the electrical characteristics of the datasheet for more details.

Bit4 PVDE: Power voltage detector enable.
This bit is set and cleared by software. Once the PVD_LOCK is enabled in the SYSCFG
configuration register 2 (SYSCFG_CFGR?2) register, the PVDE bit cannot be programmed
anymore.
0: PVD disabled
1: PVD enabled

Bit 3 CSBF: Clear standby flag.
This bit is always read as 0.

0: No effect
1: Clear the SBF standby flag (write).

3

92/1017 RMO0091 Rev 10

RMO0091 Power control (PWR)
Bit 2 CWUF: Clear wake-up flag.
This bit is always read as 0.
0: No effect
1: Clear the WUF wake-up Flag after 2 System clock cycles. (write)
Bit 1 PDDS: Power down deepsleep.
This bit is set and cleared by software. It works together with the LPDS bit.
0: Enter Stop mode when the CPU enters Deepsleep. The regulator status depends on the
LPDS bit.
1: Enter Standby mode when the CPU enters Deepsleep.
Bit 0 LPDS: Low-power deepsleep.
This bit is set and cleared by software. It works together with the PDDS bit.
0: Voltage regulator on during Stop mode
1: Voltage regulator in low-power mode during Stop mode
Note: When a peripheral that can work in STOP mode requires a clock, the Power controller
automatically switch the voltage regulator from Low-power mode to Normal mode and
remains in this mode until the request disappears.
5.4.2 Power control/status register (PWR_CSR)
Address offset: 0x04
Reset value: 0x0000 000X (not reset by wake-up from Standby mode)
Additional APB cycles are needed to read this register versus a standard APB read.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
VREF
EWUP | EWUP | EWUP | EWUP | EWUP | EWUP | EWUP | EWUP
8 7 6 5 4 3 5 1 ll?r\g(PVDO | SBF | WUF
w w rw rw w w w rw r r r r

3

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:8 EWUPXx: Enable WKUPXx pin

These bits are set and cleared by software.
0: WKUPXx pin is used for general purpose 1/0. An event on the WKUPx pin does not wake-
up the device from Standby mode.
1: WKUPXx pin is used for wake-up from Standby mode and forced in input pull down
configuration (rising edge on WKUPXx pin wakes-up the system from Standby mode).

Note: These bits are reset by a system Reset.

Bits 7:4 Reserved, must be kept at reset value.

RMO0091 Rev 10 93/1017

Power control (PWR)

RM0091

Bit 3

Bit 2

Bit 1

Bit 0

VREFINTRDY: VREFINT reference voltage ready

This bit is set and cleared by hardware to indicate the state of the internal voltage reference

VREFINT.
0: VREFINT is not ready
1: VREFINT is ready

Note: This flag is useful only for STM32F0x8 devices where POR is provided externally
(through the NPOR pin). In STM32F0x1/F0x2 devices, the internal POR waits for
VREFINT to stabilize before releasing the reset.

PVDO: PVD output

This bit is set and cleared by hardware. It is valid only if PVD is enabled by the PVDE bit.

0: Vpp is higher than the PVD threshold selected with the PLS[2:0] bits.
1: Vpp is lower than the PVD threshold selected with the PLS[2:0] bits.

Notes:

1. The PVD is stopped by Standby mode. For this reason, this bit is equal to 0 after Standby

or reset until the PVDE bit is set.

2. Once the PVD is enabled and configured in the PWR_CR register, PVDO can be used to

generate an interrupt through the external interrupt controller.

SBF: Standby flag

This bit is set by hardware when the device enters Standby mode and it is cleared only by a

POR/PDR (power on reset/power down reset) or by setting the CSBF bit in the Power control

register (PWR_CR)
0: Device has not been in Standby mode
1: Device has been in Standby mode

WUF: Wake-up flag

This bit is set by hardware to indicate that the device received a wake-up event. It is cleared by

a system reset or by setting the CWUF bit in the Power control register (PWR_CR)
0: No wake-up event occurred

1: A wake-up event was received from one of the enabled WKUPX pins or from the RTC

alarm.

Note: An additional wake-up event is detected if one WKUPXx pin is enabled (by setting the

EWUPXx bit) when its pin level is already high.

543 PWR register map
The following table summarizes the PWR register map and reset values.
Table 18. PWR register map and reset values

Offset | Register |5 (QIQIQINIQIQIIRNNIIQSIRIEILIRTIRVNCIC|lo|o/~owv/¢ v la|~|o
a ww L0 |n
Q@22 |a
oxo00 | PWRCR el SIE|S
Reset value ofoJofjofofOfO]O]O

>_

[a]

© |~ [© |0 [T [| [o
oo | |a(o (oo |a = O |u |w
PWR_CSR SI2I22212|2|2 Z |9 |a |2
0x004 = = = i = = = P Tz |®|=

W fwjwjwjwww %

>
Reset value 0[0[0(0[0|0]0]0 X|0]0]0

94/1017

Refer to Section 2.2 on page 46 for the register boundary addresses.

RMO0091 Rev 10

3

RM0091

Reset and clock control (RCC)

6

6.1

6.1.1

6.1.2

3

Reset and clock control (RCC)

Reset

There are three types of reset, defined as system reset, power reset and RTC domain reset.

Power reset

A power reset is generated when one of the following events occurs:
1. Power-on/power-down reset (POR/PDR reset)
2. When exiting Standby mode

A power reset sets all registers to their reset values except the RTC domain (Figure 6:
Power supply overview).

In STM32F0x8 devices, the POR/PDR reset is not functional and the Standby mode is not
available. Power reset must be provided from an external NPOR pin (active low and
released by the application when all supply voltages are stabilized).

System reset

A system reset sets all registers to their reset values except the reset flags in the clock
controller CSR register and the registers in the RTC domain (see Figure 6: Power supply
overview).

A system reset is generated when one of the following events occurs:

1. Alow level on the NRST pin (external reset)

Window watchdog event (WWDG reset)

Independent watchdog event (IWDG reset)

A software reset (SW reset) (see Software reset)

Low-power management reset (see Low-power management reset)

Option byte loader reset (see Option byte loader reset)

7. Apower reset

o gk wN

The reset source can be identified by checking the reset flags in the Control/Status register,
RCC_CSR (see Section 6.4.10: Control/status register (RCC_CSR)).

These sources act on the NRST pin and it is always kept low during the delay phase. The
RESET service routine vector is fixed at address 0x0000_0004 in the memory map.

The system reset signal provided to the device is output on the NRST pin. The pulse
generator guarantees a minimum reset pulse duration of 20 ps for each internal reset
source. In case of an external reset, the reset pulse is generated while the NRST pin is
asserted low.

RMO0091 Rev 10 95/1017

Reset and clock control (RCC) RMO0091

6.1.3

96/1017

Figure 9. Simplified diagram of the reset circuit

— Vop
Reuy
External
—I .
reset * {1 Filter System reset
NRST
WWDG reset
Pulse Power rese
generator Software reset
(min 20 ps) Low-power management reset
- Option byte loader reset
— - Exit from Standby mode
MS19841V4

Software reset

The SYSRESETREQ bit in Cortex®-M0 Application Interrupt and Reset Control Register
must be set to force a software reset on the device. Refer to the Cortex™-MO technical
reference manual for more details.

Low-power management reset

There are two ways to generate a low-power management reset:
1. Reset generated when entering Standby mode:

This type of reset is enabled by resetting nRST_STDBY bit in User Option Bytes. In this
case, whenever a Standby mode entry sequence is successfully executed, the device
is reset instead of entering Standby mode.

2. Reset when entering Stop mode:

This type of reset is enabled by resetting nRST_STOP bit in User Option Bytes. In this
case, whenever a Stop mode entry sequence is successfully executed, the device is
reset instead of entering Stop mode.

For further information on the User Option Bytes, refer to Section 4: Option bytes.

Option byte loader reset

The option byte loader reset is generated when the OBL_LAUNCH bit (bit 13) is set in the
FLASH_CR register. This bit is used to launch the option byte loading by software.

RTC domain reset

The RTC domain has two specific resets that affect only the RTC domain (Figure 6: Power
supply overview).

An RTC domain reset only affects the LSE oscillator, the RTC, the Backup registers and the

RCC RTC domain control register (RCC_BDCR). It is generated when one of the following

events occurs.

1. Software reset, triggered by setting the BDRST bit in the RTC domain control register
(RCC_BDCR).

2. Vpp power-up if Vgat has been disconnected when it was low.

3

RMO0091 Rev 10

RMO0091 Reset and clock control (RCC)
The Backup registers are also reset when one of the following events occurs:
1. RTC tamper detection event.
2. Change of the read out protection from level 1 to level 0.

6.2 Clocks

3

Various clock sources can be used to drive the system clock (SYSCLK):

e HSI 8 MHz RC oscillator clock

e HSE oscillator clock

e PLL clock

e HSI48 48 MHz RC oscillator clock (available on STM32F04x, STM32F07x and
STM32F09x devices only)

The devices have the following additional clock sources:

e 40 kHz low speed internal RC (LS| RC) which drives the independent watchdog and
optionally the RTC used for Auto-wake-up from Stop/Standby mode.

e 32.768 kHz low speed external crystal (LSE crystal) which optionally drives the real-
time clock (RTCCLK)

e 14 MHz high speed internal RC (HSI14) dedicated for ADC.

Each clock source can be switched on or off independently when it is not used, to optimize
power consumption.

Several prescalers can be used to configure the frequency of the AHB and the APB
domains. The AHB and the APB domains maximum frequency is 48 MHz.

RMO0091 Rev 10 97/1017

Reset and clock control (RCC) RMO0091

All the peripheral clocks are derived from their bus clock (HCLK for AHB or PCLK for APB)
except:

The Flash memory programming interface clock (FLITFCLK) which is always the HSI
clock.

The option byte loader clock which is always the HSI clock

The ADC clock which is derived (selected by software) from one of the two following
sources:

— dedicated HSI14 clock, to run always at the maximum sampling rate
— APB clock (PCLK) divided by 2 or 4

The USART1 clock, USART2 clock (on STM32F07x and STM32F09x devices only)
and USART3 clock (on STM32F09x devices only) which is derived (selected by
software) from one of the four following sources:

— system clock

— HSlclock

— LSE clock

— APB clock (PCLK)

The 12C1 clock which is derived (selected by software) from one of the two following
sources:

— system clock
— HSl clock

The USB clock which is derived (selected by software) from one of the two following
sources:

— PLL clock
— HSI48 clock

The CEC clock which is derived from the HSI clock divided by 244 or from the LSE
clock.

The 1251 and 12S2 clock which is always the system clock.
The RTC clock which is derived from the LSE, LSI or from the HSE clock divided by 32.
The timer clock frequencies are automatically fixed by hardware. There are two cases:

— ifthe APB prescaler is 1, the timer clock frequencies are set to the same
frequency as that of the APB domain;

— otherwise, they are set to twice (x2) the frequency of the APB domain.
The IWDG clock which is always the LSI clock.

The RCC feeds the Cortex System Timer (SysTick) external clock with the AHB clock
(HCLK) divided by 8. The SysTick can work either with this clock or directly with the Cortex
clock (HCLK), configurable in the SysTick Control and Status Register.

98/1017

3

RMO0091 Rev 10

RM0091

Reset and clock control (RCC)

Figure 10. Clock tree (STM32F03x and STM32F05x devices)

FLITFCLK
» to Flash programming interface
HSI
» to 12C1
SYSCLK
» to 1281
LSE ——
——— to CEC
8 MHz | HSI 1244
HSIRC
HCLK » to AHB bus, core,
memory and DMA
PLLSRC i
BLLMUL sSW to cortex System timer
| HS » FCLK Cortex free running clock
PLL AHB APB
X2,X3,.. PLLCLK }—'— prescaler - prescaler PCLK » to APB
eripherals
x16 HSE 1,2,.512 | [/1,2,4,8,16 perip
SYSCLK _
2. [prscaler =0 Ly 0T 236
16 ——PREDIV x1 else x. 14,15,16,17
OSC_OuT PCLK
- imz MHz SYSGIK —] —————» to USART1
HSE OSC
OSC_IN LSE —
RTCCLK
0SC32_IN iLSE 0SGC » to RTC
0SC32_OUT 32.768kHz| LSE
RTCSEL[1:0]
LSIRC LSI » to IWDG
40kHz)
) PLLINODIV
MCOPRE
Main clock PLLCLK
HSI
output
MCO [J« . 1,2,4, ﬂgg“ 14 MHz | HSI14 to ADC
.. 128 SYSCLK HSI14 RC asynchronous
tg:z clock input
to TIM14 MCO
MS32116V3

1. Not available on STM32F05x devices.

3

RMO0091 Rev 10

99/1017

Reset and clock control (RCC) RMO0091

Figure 11. Clock tree (STM32F04x, STM32F07x and STM32F09x devices)

FLITFCLK
> to Flash terf
rogramming interface
— HSI prog 9
I
SYSCLK to 12C1
y » to 12S1,2
48 MHz HSI48
HS148 RC
LSE —
8 MHz HSI P ——— > to CEC
HSI RC
HCLK to AHB bus, core,
memory and DMA
SW [to cortex System timer
PLLSRC P'—L:V'U'- — [FCLK Cortex free running clock
HSI
PLL AHB APB
1,2
é e[] X2X3.-- PLLCLK] | & | prescaler|-s— prescaler PCLK___, {0 APB peripherals
x16 HSE /1,2,..512 /1,2,4,8,16
PREDIV SYSCLK
L4 CSS
.| If (APB1 prescaler to TIM1,2,3,6,7
0sC OUT =1) x1 else x2 14,15,16,17
- E'j: 4-32 MHz
HSE 0SC PCLK
OSC_N SYS?_I'-Sﬁ] to USART1
LSE to USART2)
132 cc to USART3
RTCCLK
OSC32_IN E: LSE OSC LSE > to RTC
32.768kH
0SC32_0UT ‘ HSI48 — , to USB
RTCSEL[1:0] PLLCLK
LSIRC LSI I
40kHz " to IWDG
PLLNODIV
MCOPRE PLLCLK
; | —=HsI
Main clock HSI8 VRV
output | /1,24, HSI14 Z|HSM4 | toADC
McoL 128 HSE HSI14 RC asynchronous
= SYSCLK clock input
—LSI
LSE
to TIM14 MCO
MS31418V3

1. Not available on STM32F04x devices.
2. Not available on STM32F04x and STM32F07x devices

FCLK acts as Cortex®-M0’s free-running clock. For more details refer to the Arm
Cortex-MO rOp0 technical reference manual (TRM).

3

100/1017 RMO0091 Rev 10

RM0091

Reset and clock control (RCC)

6.2.1

3

HSE clock

The high speed external clock signal (HSE) can be generated from two possible clock

sources:

e HSE external crystal/ceramic resonator

. HSE user external clock

The resonator and the load capacitors have to be placed as close as possible to the
oscillator pins in order to minimize output distortion and startup stabilization time. The
loading capacitance values must be adjusted according to the selected oscillator.

Figure 12. HSE/ LSE clock sources

Clock source

Hardware configuration

External clock

OSC_IN 0OSC_OouT

] []
T GPIO
External
source

MSv31915V1

OSC_IN OSC_OUT‘

M
Crystal/Ceramic
resonators —L_i |:| }TL
- Cu C2 -
X Load 4
capacitors
MSv31916V1
RMO0091 Rev 10 101/1017

Reset and clock control (RCC) RMO0091

Caution:

6.2.2

102/1017

External crystal/ceramic resonator (HSE crystal)

The 4 to 32 MHz external oscillator has the advantage of producing a very accurate rate on
the main clock.

The associated hardware configuration is shown in Figure 12. Refer to the electrical
characteristics section of the datasheet for more details.

The HSERDY flag in the Clock control register (RCC_CR) indicates if the HSE oscillator is
stable or not. At startup, the clock is not released until this bit is set by hardware. An
interrupt can be generated if enabled in the Clock interrupt register (RCC_CIR).

The HSE Crystal can be switched on and off using the HSEON bit in the Clock control
register (RCC_CR).

For code example refer to the Appendix section A.3.1: HSE start sequence code example.

To switch ON the HSE oscillator, 512 HSE clock pulses need to be seen by an internal
stabilization counter after the HSEON bit is set. Even in the case that no crystal or resonator
is connected to the device, excessive external noise on the OSC_IN pin may still lead the
oscillator to start. Once the oscillator is started, it needs another 6 HSE clock pulses to
complete a switching OFF sequence. If for any reason the oscillations are no more present
on the OSC_IN pin, the oscillator cannot be switched OFF, locking the OSC pins from any
other use and introducing unwanted power consumption. To avoid such situation, it is
strongly recommended to always enable the Clock Security System (CSS) which is able to
switch OFF the oscillator even in this case.

External source (HSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to
32 MHz. You select this mode by setting the HSEBYP and HSEON bits in the Clock control
register (RCC_CR). The external clock signal (square, sinus or triangle) with ~40-60% duty
cycle depending on the frequency (refer to the datasheet) has to drive the OSC_IN pin while
the OSC_OUT pin can be used a GPIO. See Figure 12.

HSI clock

The HSI clock signal is generated from an internal 8 MHz RC oscillator and can be used
directly as a system clock or for PLL input

The HSI RC oscillator has the advantage of providing a clock source at low cost (no external
components). It also has a faster startup time than the HSE crystal oscillator however, even
with calibration the frequency is less accurate than an external crystal oscillator or ceramic
resonator.

Calibration

RC oscillator frequencies can vary from one chip to another due to manufacturing process
variations, this is why each device is factory calibrated by ST for 1% accuracy at Ty=25°C.

After reset, the factory calibration value is loaded in the HSICAL[7:0] bits in the Clock control
register (RCC_CR).

If the application is subject to voltage or temperature variations this may affect the RC
oscillator speed. You can trim the HSI frequency in the application using the HSITRIM[4:0]
bits in the Clock control register (RCC_CR).

RMO0091 Rev 10 ‘Yl

RM0091

Reset and clock control (RCC)

6.2.3

6.2.4

3

For more details on how to measure the HSI frequency variation refer to Section 6.2.13:
Internal/external clock measurement with TIM14 on page 107.

The HSIRDY flag in the Clock control register (RCC_CR) indicates if the HSI RC is stable or
not. At startup, the HSI RC output clock is not released until this bit is set by hardware.

The HSI RC can be switched on and off using the HSION bit in the Clock control register
(RCC_CR).

The HSI signal can also be used as a backup source (Auxiliary clock) if the HSE crystal
oscillator fails. Refer to Section 6.2.8: Clock security system (CSS) on page 105.

Furthermore it is possible to drive the HSI clock to the MCO multiplexer. Then the clock
could be driven to the Timer 14 giving the ability to the user to calibrate the oscillator.

HSI148 clock

On STM32F04x, STM32F07x and STM32F09x devices only, the HS148 clock signal is
generated from an internal 48 MHz RC oscillator and can be used directly as a system clock
or divided and be used as PLL input.

The internal 48MHz RC oscillator is mainly dedicated to provide a high precision clock to the
USB peripheral by means of a special Clock recovery system (CRS) circuitry, which could
use the USB SOF signal or the LSE or an external signal to automatically adjust the
oscillator frequency on-fly, in a very small steps. This oscillator can also be used as a
system clock source when the system is in run mode; it is disabled as soon as the system
enters in Stop or Standby mode. When the CRS is not used, the HSI48 RC oscillator runs on
its default frequency which is subject to manufacturing process variations, this is why each
device is factory calibrated by ST for ~3% accuracy at Tp = 25 °C.

For more details on how to configure and use the CRS peripheral refer to Section 7.

The HSI48RDY flag in the Clock control register (RCC_CR) indicates if the HS148 RC is
stable or not. At startup, the HS148 RC output clock is not released until this bit is set by
hardware.

The HSI48 RC can be switched on and off using the HSI480N bit in the Clock control
register (RCC_CR). This oscillator is also automatically enabled (by hardware forcing
HSI480N bit to one) as soon as it is chosen as a clock source for the USB and the
peripheral is enabled.

Furthermore it is possible to drive the HSI48 clock to the MCO multiplexer and use it as a
clock source for other application components.

PLL

The internal PLL can be used to multiply the HSI, a divided HSI48 or the HSE output clock
frequency. Refer to Figure 9: Simplified diagram of the reset circuit, Figure 12: HSE/ LSE
clock sources and Clock control register (RCC_CR).

The PLL configuration (selection of the input clock, predivider and multiplication factor) must
be done before enabling the PLL. Once the PLL is enabled, these parameters cannot be
changed.

RMO0091 Rev 10 103/1017

Reset and clock control (RCC) RMO0091

6.2.5

Caution:

6.2.6

104/1017

To modify the PLL configuration, proceed as follows:

Disable the PLL by setting PLLON to 0.

Wait until PLLRDY is cleared. The PLL is now fully stopped.
Change the desired parameter.

Enable the PLL again by setting PLLON to 1.

Wait until PLLRDY is set.

ok wpd -~

An interrupt can be generated when the PLL is ready, if enabled in the Clock interrupt
register (RCC_CIR).

The PLL output frequency must be set in the range 16-48 MHz.

For code example refer to the Appendix section A.3.2: PLL configuration modification code
example.

LSE clock

The LSE crystal is a 32.768 kHz Low Speed External crystal or ceramic resonator. It has the
advantage of providing a low-power but highly accurate clock source to the real-time clock
peripheral (RTC) for clock/calendar or other timing functions.

The LSE crystal is switched on and off using the LSEON bit in RTC domain control register
(RCC_BDCR). The crystal oscillator driving strength can be changed at runtime using the
LSEDRV[1:0] bits in the RTC domain control register (RCC_BDCR) to obtain the best
compromise between robustness and short start-up time on one side and low-power
consumption on the other.

The LSERDY flag in the RTC domain control register (RCC_BDCR) indicates whether the
LSE crystal is stable or not. At startup, the LSE crystal output clock signal is not released
until this bit is set by hardware. An interrupt can be generated if enabled in the Clock
interrupt register (RCC_CIR).

To switch ON the LSE oscillator, 4096 LSE clock pulses need to be seen by an internal
stabilization counter after the LSEON bit is set. Even in the case that no crystal or resonator
is connected to the device, excessive external noise on the OSC32_IN pin may still lead the
oscillator to start. Once the oscillator is started, it needs another 6 LSE clock pulses to
complete a switching OFF sequence. If for any reason the oscillations are no more present
on the OSC_IN pin, the oscillator cannot be switched OFF, locking the OSC32 pins from any
other use and introducing unwanted power consumption. The only way to recover such
situation is to perform the RTC domain reset by software.

External source (LSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to

1 MHz. You select this mode by setting the LSEBYP and LSEON bits in the RTC domain
control register (RCC_BDCR). The external clock signal (square, sinus or triangle) with
~50% duty cycle has to drive the OSC32_IN pin while the OSC32_OUT pin can be used as
GPIO. See Figure 12.

LSl clock

The LSI RC acts as a low-power clock source that can be kept running in Stop and Standby
mode for the independent watchdog (IWDG) and RTC. The clock frequency is around 40
kHz. For more details, refer to the electrical characteristics section of the datasheets.

RMO0091 Rev 10 ‘Yl

RM0091

Reset and clock control (RCC)

6.2.7

6.2.8

Note:

6.2.9

3

The LSI RC can be switched on and off using the LSION bit in the Control/status register
(RCC_CSR).

The LSIRDY flag in the Control/status register (RCC_CSR) indicates if the LS| oscillator is
stable or not. At startup, the clock is not released until this bit is set by hardware. An
interrupt can be generated if enabled in the Clock interrupt register (RCC_CIR).

System clock (SYSCLK) selection

Various clock sources can be used to drive the system clock (SYSCLK):

e HSIl oscillator

e HSE oscillator

e PLL

e HSI48 oscillator (available only on STM32F04x, STM32F07x and STM32F09x devices)

After a system reset, the HSI oscillator is selected as system clock. When a clock source is
used directly or through the PLL as a system clock, it is not possible to stop it.

A switch from one clock source to another occurs only if the target clock source is ready
(clock stable after startup delay or PLL locked). If a clock source which is not yet ready is
selected, the switch will occur when the clock source becomes ready. Status bits in the
Clock control register (RCC_CR) indicate which clock(s) is (are) ready and which clock is
currently used as a system clock.

Clock security system (CSS)

Clock security system can be activated by software. In this case, the clock detector is
enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped.

If a failure is detected on the HSE clock, the HSE oscillator is automatically disabled, a clock
failure event is sent to the break input of the advanced-control timers (TIM1) and general-
purpose timers (TIM15, TIM16 and TIM17) and an interrupt is generated to inform the
software about the failure (clock security system interrupt, or CSSlI), allowing the MCU to
perform rescue operations. The CSSl is linked to the Cortex®-M0 NMI (Non-Maskable
Interrupt) exception vector.

Once the CSS is enabled and if the HSE clock fails, the CSS interrupt occurs and an NMI is
automatically generated. The NMI is executed indefinitely unless the CSS interrupt pending
bit is cleared. As a consequence, in the NMI ISR user must clear the CSS interrupt by
setting the CSSC bit in the Clock interrupt register (RCC_CIR).

If the HSE oscillator is used directly or indirectly as the system clock (indirectly means: it is
used as PLL input clock, and the PLL clock is used as system clock), a detected failure
causes a switch of the system clock to the HSI oscillator and the disabling of the HSE
oscillator. If the HSE clock (divided or not) is the clock entry of the PLL used as system clock
when the failure occurs, the PLL is disabled too.

ADC clock

The ADC clock selection is done inside the ADC_CFGR2 (refer to Section 13.11.5: ADC
configuration register 2 (ADC_CFGR2) on page 271). It can be either the dedicated 14 MHz
RC oscillator (HSI14) connected on the ADC asynchronous clock input or PCLK divided by
2 or 4. The 14 MHz RC oscillator can be configured by software either to be turned on/off
(“auto-off mode”) by the ADC interface or to be always enabled. The HSI 14 MHz RC

RMO0091 Rev 10 105/1017

Reset and clock control (RCC) RMO0091

6.2.10

6.2.11

6.2.12

106/1017

oscillator cannot be turned on by ADC interface when the APB clock is selected as an ADC
kernel clock.

RTC clock

The RTCCLK clock source can be either the HSE/32, LSE or LSI clocks. This is selected by
programming the RTCSEL[1:0] bits in the RTC domain control register (RCC_BDCR). This
selection cannot be modified without resetting the RTC domain. The system must be always
configured in a way that the PCLK frequency is greater then or equal to the RTCCLK
frequency for proper operation of the RTC.

The LSE clock is in the RTC domain, whereas the HSE and LSI clocks are not.
Consequently:
. If LSE is selected as RTC clock:

— The RTC continues to work even if the Vpp supply is switched off, provided the
Vpgat supply is maintained.

— The RTC remains clocked and functional under system reset
e IfLSlis selected as the RTC clock:
— The RTC state is not guaranteed if the Vpp supply is powered off. Refer to
Section 6.2.6: LSl clock on page 104 for more details on LSI calibration.
e Ifthe HSE clock divided by 32 is used as the RTC clock:

— The RTC state is not guaranteed if the Vpp supply is powered off or if the internal
voltage regulator is powered off (removing power from the 1.8 V domain).

When the RTC clock is LSE, the RTC remains clocked and functional under system reset.

Independent watchdog clock

If the Independent watchdog (IWDG) is started by either hardware option or software
access, the LS| oscillator is forced ON and cannot be disabled. After the LSI oscillator
temporization, the clock is provided to the IWDG.

Clock-out capability

The microcontroller clock output (MCO) capability allows the clock to be output onto the
external MCO pin. The configuration registers of the corresponding GPIO port must be
programmed in alternate function mode. One of the following clock signals can be selected
as the MCO clock:

e HSI14

e SYSCLK

e HSI

e HSE

e PLL clock divided by 2 or direct (direct connection is not available on STM32F05x
devices)

e LSE

e LSI

e HSI48 (on STM32F04x, STM32F07x and STM32F09x devices only)

The selection is controlled by the MCO[3:0] bits of the Clock configuration register
(RCC_CFGR).

RMO0091 Rev 10 ‘Yl

RM0091

Reset and clock control (RCC)

6.2.13

3

For code example refer to the Appendix section A.3.3: MCO selection code example.

On STM32F03x, STM32F04x, STM32F07x and STM32F09x devices, the additional bit
PLLNODIV of this register controls the divider bypass for a PLL clock input to MCO. The
MCO frequency can be reduced by a configurable binary divider, controlled by the
MCOPREJ2..0] bits of the Clock configuration register (RCC_CFGR).

Internal/external clock measurement with TIM14

It is possible to indirectly measure the frequency of all on-board clock sources by mean of
the TIM14 channel 1 input capture. As represented on Figure 13.

Figure 13. Frequency measurement with TIM14 in capture mode

TIM14

TI1_RMP[1:0]

GPIO
RTCCLK i
HSE/32
MCO

MS31046V1

The input capture channel of the Timer 14 can be a GPIO line or an internal clock of the
MCU. This selection is performed through the TI1_RMP [1:0] bits in the TIM14_OR register.
The possibilities available are the following ones.

e TIM14 Channel1 is connected to the GPIO. Refer to the alternate function mapping in
the device datasheets.

e TIM14 Channel1 is connected to the RTCCLK.
e TIM14 Channel1 is connected to the HSE/32 Clock.

e TIM14 Channel1 is connected to the microcontroller clock output (MCO). Refer to
Section 6.2.12: Clock-out capability for MCO clock configuration.

For code example refer to the Appendix section A.3.4: Clock measurement configuration
with TIM14 code example.

Calibration of the HSI

The primary purpose of connecting the LSE, through the MCO multiplexer, to the channel 1
input capture is to be able to precisely measure the HSI system clocks (for this, the HSI
should be used as the system clock source). The number of HSI clock counts between
consecutive edges of the LSE signal provides a measure of the internal clock period. Taking
advantage of the high precision of LSE crystals (typically a few tens of ppm), it is possible to
determine the internal clock frequency with the same resolution, and trim the source to
compensate for manufacturing-process- and/or temperature- and voltage-related frequency
deviations.

The HSI oscillator has dedicated user-accessible calibration bits for this purpose.

The basic concept consists in providing a relative measurement (e.g. the HSI/LSE ratio): the
precision is therefore closely related to the ratio between the two clock sources. The higher
the ratio is, the better the measurement is.

RMO0091 Rev 10 107/1017

Reset and clock control (RCC) RMO0091

6.3

108/1017

If LSE is not available, HSE/32 is the better option in order to reach the most precise
calibration possible.

Calibration of the LSI

The calibration of the LSI will follow the same pattern that for the HSI, but changing the
reference clock. It is necessary to connect LSI clock to the channel 1 input capture of the
TIM14. Then define the HSE as system clock source, the number of its clock counts
between consecutive edges of the LSI signal provides a measure of the internal low speed
clock period.

The basic concept consists in providing a relative measurement (e.g. the HSE/LSI ratio): the
precision is therefore closely related to the ratio between the two clock sources. The higher
the ratio is, the better the measurement is.

Calibration of the HSI14

For the HSI14, because of its high frequency, it is not possible to have a precise resolution.
However a solution could be to clock Timer 14 with HSE through PLL to reach 48 MHz, and
to use the input capture line with the HSI14 and the capture prescaler defined to the higher
value. In that configuration, we got a ratio of 27 events. It is still a bit low to have an accurate
calibration. In order to increase the measure accuracy, it is advised to count the HSI periods
after multiple cycles of Timer 14. Using polling to treat the capture event is necessary in this
case.

Low-power modes

APB peripheral clocks and DMA clock can be disabled by software.

Sleep mode stops the CPU clock. The memory interface clocks (Flash and RAM interfaces)
can be stopped by software during sleep mode. The AHB to APB bridge clocks are disabled
by hardware during Sleep mode when all the clocks of the peripherals connected to them
are disabled.

Stop mode stops all the clocks in the core supply domain and disables the PLL and the HSI,
HSI48, HS114 and HSE oscillators.

HDMI CEC, USART1, USART2 (only on STM32F07x and STM32F09x devices), USART3
(only on STM32F09x devices) and 12C1 have the capability to enable the HSI oscillator
even when the MCU is in Stop mode (if HSI is selected as the clock source for that
peripheral). When the system is in Stop mode, with the regulator in LP mode, the clock
request coming from any of those three peripherals moves the regulator to MR mode in
order to have the proper current drive capability for the core logic. The regulator moves back
to LP mode once this request is removed without waking up the MCU.

HDMI CEC, USART1, USART2 (only on STM32F07x and STM32F09x devices) and
USART3 (only on STM32F09x devices) can also be driven by the LSE oscillator when the
system is in Stop mode (if LSE is selected as clock source for that peripheral) and the LSE
oscillator is enabled (LSEON) but they do not have the capability to turn on the LSE
oscillator.

Standby mode stops all the clocks in the core supply domain and disables the PLL and the
HSI, HS148, HSI14 and HSE oscillators.

The CPU’s deepsleep mode can be overridden for debugging by setting the DBG_STOP or
DBG_STANDBY bits in the DBGMCU_CR register.

RMO0091 Rev 10 ‘Yl

RM0091

Reset and clock control (RCC)

3

When waking up from deepsleep after an interrupt (Stop mode) or reset (Standby mode),
the HSI oscillator is selected as system clock.

If a Flash programming operation is on going, deepsleep mode entry is delayed until the
Flash interface access is finished. If an access to the APB domain is ongoing, deepsleep
mode entry is delayed until the APB access is finished.

RMO0091 Rev 10 109/1017

Reset and clock control (RCC) RMO0091

6.4 RCC registers

Refer to Section 1.2 on page 42 for a list of abbreviations used in register descriptions.

6.4.1 Clock control register (RCC_CR)

Address offset: 0x00
Reset value: 0x0000 XX83 where X is undefined.

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RDY | PLLON o | Bve | ROV | ‘on
r w w w r w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HSICAL[7:0] HSITRIM[4:0] HSI 1 sion
RDY
r ‘ r ‘ r ‘ r | r | r ‘ r ‘ r w ‘ w | rw | rw ‘ rw r w

Bits 31:26 Reserved, must be kept at reset value.

Bit 25 PLLRDY: PLL clock ready flag
Set by hardware to indicate that the PLL is locked.
0: PLL unlocked
1: PLL locked

Bit 24 PLLON: PLL enable
Set and cleared by software to enable PLL.
Cleared by hardware when entering Stop or Standby mode. This bit can not be reset if the PLL
clock is used as system clock or is selected to become the system clock.
0: PLL OFF
1: PLL ON

Bits 23:20 Reserved, must be kept at reset value.

Bit 19 CSSON: Clock security system enable
Set and cleared by software to enable the clock security system. When CSSON is set, the
clock detector is enabled by hardware when the HSE oscillator is ready, and disabled by
hardware if a HSE clock failure is detected.
0: Clock security system disabled (clock detector OFF).
1: Clock security system enabled (clock detector ON if the HSE is ready, OFF if not).

Bit 18 HSEBYP: HSE crystal oscillator bypass
Set and cleared by software to bypass the oscillator with an external clock. The external clock
must be enabled with the HSEON bit set, to be used by the device. The HSEBYP bit can be
written only if the HSE oscillator is disabled.
0: HSE crystal oscillator not bypassed
1: HSE crystal oscillator bypassed with external clock

3

110/1017 RMO0091 Rev 10

RM0091

Reset and clock control (RCC)

6.4.2

3

Bit 17

Bit 16

Bits 15:8

Bits 7:3

Bit 2
Bit 1

Bit O

HSERDY: HSE clock ready flag

Set by hardware to indicate that the HSE oscillator is stable. This bit needs 6 cycles of the HSE
oscillator clock to fall down after HSEON reset.

0: HSE oscillator not ready
1: HSE oscillator ready

HSEON: HSE clock enable
Set and cleared by software.

Cleared by hardware to stop the HSE oscillator when entering Stop or Standby mode. This bit
cannot be reset if the HSE oscillator is used directly or indirectly as the system clock.

0: HSE oscillator OFF
1: HSE oscillator ON

HSICAL[7:0]: HSI clock calibration

These bits are initialized automatically at startup. They are adjusted by SW through the
HSITRIM setting.

HSITRIM[4:0]: HSI clock trimming

These bits provide an additional user-programmable trimming value that is added to the
HSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature that
influence the frequency of the HSI.

The default value is 16, which, when added to the HSICAL value, should trim the HSI to 8 MHz
+ 1%. The trimming step is around 40 kHz between two consecutive HSICAL steps.

Note: Increased value in the register results to higher clock frequency.
Reserved, must be kept at reset value.

HSIRDY: HSI clock ready flag
Set by hardware to indicate that HSI oscillator is stable. After the HSION bit is cleared,
HSIRDY goes low after 6 HSI oscillator clock cycles.

0: HSI oscillator not ready

1: HSI oscillator ready

HSION: HSI clock enable
Set and cleared by software.
Set by hardware to force the HSI oscillator ON when leaving Stop or Standby mode or in case
of failure of the HSE crystal oscillator used directly or indirectly as system clock. This bit
cannot be reset if the HSI is used directly or indirectly as system clock or is selected to become
the system clock.

0: HSI oscillator OFF

1: HSI oscillator ON

Clock configuration register (RCC_CFGR)

Address offset: 0x04
Reset value: 0x0000 0000

Access: 0 < wait state < 2, word, half-word and byte access

1 or 2 wait states inserted only if the access occurs during clock source switch.

RMO0091 Rev 10 111/1017

Reset and clock control (RCC) RMO0091

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PLL , _ _ PLL | PLL
NODIV MCOPRE[2:0] MCO[3:0] Res. | Res. PLLMUL[3:0] XTPRE | SRC[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PLL | ADC .) . .
srepo) | PRE PPRE[2:0] HPRE[3:0] SWSI[1:0] SWI1:0]

Bit 31 PLLNODIV: PLL clock not divided for MCO (not available on STM32F05x devices)
This bit is set and cleared by software. It switches off divider by 2 for PLL connection to MCO.

0: PLL is divided by 2 for MCO
1: PLL is not divided for MCO

Bits 30:28 MCOPRE[2:0]: Microcontroller clock output prescaler (not available on STM32F05x devices)
These bits are set and cleared by software to select the MCO prescaler division factor. To
avoid glitches, it is highly recommended to change this prescaler only when the MCO output is
disabled.

000: MCQ is divided by 1
001: MCO is divided by 2
010: MCO is divided by 4

111: MCO is divided by 128

Bits 27:24 MCO[3:0]: Microcontroller clock output
Set and cleared by software.

0000: MCO output disabled, no clock on MCO

0001: Internal RC 14 MHz (HSI14) oscillator clock selected

0010: Internal low speed (LSI) oscillator clock selected

0011: External low speed (LSE) oscillator clock selected

0100: System clock selected

0101: Internal RC 8 MHz (HSI) oscillator clock selected

0110: External 4-32 MHz (HSE) oscillator clock selected

0111: PLL clock selected (divided by 1 or 2, depending on PLLNODIV)
1000: Internal RC 48 MHz (HSI48) oscillator clock selected

Note: This clock output may have some truncated cycles at startup or during MCO clock

source switching.

Bits 23:22 Reserved, must be kept at reset value.

112/1017

3

RMO0091 Rev 10

RMO0091 Reset and clock control (RCC)

Bits 21:18 PLLMUL[3:0]: PLL multiplication factor
These bits are written by software to define the PLL multiplication factor. These bits can be
written only when PLL is disabled.
Caution: The PLL output frequency must not exceed 48 MHz.
0000: PLL input clock x 2
0001: PLL input clock x 3
0010: PLL input clock x 4
0011: PLL input clock x 5
0100: PLL input clock x 6
0101: PLL input clock x 7
0110: PLL input clock x 8
0111: PLL input clock x 9
1000: PLL input clock x 10
1001: PLL input clock x 11
1010: PLL input clock x 12
1011: PLL input clock x 13
1100: PLL input clock x 14
1101: PLL input clock x 15
1110: PLL input clock x 16
1111: PLL input clock x 16

Bit 17 PLLXTPRE: HSE divider for PLL input clock
This bit is the same bit as bit PREDIV[0] from RCC_CFGR2. Refer to RCC_CFGR2 PREDIV
bits description for its meaning.

Bits 16:15 PLLSRC[1:0]: PLL input clock source
Set and cleared by software to select PLL or PREDIV clock source. These bits can be written
only when PLL is disabled.
00: HSI/2 selected as PLL input clock (PREDIV forced to divide by 2 on STM32F04x,
STM32F07x and STM32F09x devices)
01: HSI/PREDIV selected as PLL input clock
10: HSE/PREDIV selected as PLL input clock
11: HSI48/PREDIV selected as PLL input clock
Bit PLLSRC[0] is available only on STM32F04x, STM32F07x and STM32F09x devices,
otherwise it is reserved (with value zero).

Bit 14 ADCPRE: ADC prescaler

Obsolete setting. Proper ADC clock selection is done inside the ADC_CFGR2 (refer to
Section 13.11.5: ADC configuration register 2 (ADC_CFGR2) on page 271).

Bits 13:11 Reserved, must be kept at reset value.

Bits 10:8 PPRE[2:0]: PCLK prescaler
Set and cleared by software to control the division factor of the APB clock (PCLK).
Oxx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

3

RMO0091 Rev 10 113/1017

Reset and clock control (RCC) RMO0091

Bits 7:4 HPRE[3:0]: HCLK prescaler
Set and cleared by software to control the division factor of the AHB clock.

Oxxx: SYSCLK not divided
1000: SYSCLK divided by 2
1001: SYSCLK divided by 4
1010: SYSCLK divided by 8
1011: SYSCLK divided by 16
1100: SYSCLK divided by 64
1101: SYSCLK divided by 128
1110: SYSCLK divided by 256
1111: SYSCLK divided by 512

Bits 3:2 SWS[1:0]: System clock switch status
Set and cleared by hardware to indicate which clock source is used as system clock.
00: HSI oscillator used as system clock
01: HSE oscillator used as system clock
10: PLL used as system clock
11: HSI148 oscillator used as system clock (when available)

Bits 1:0 SWI[1:0]: System clock switch
Set and cleared by software to select SYSCLK source.
Cleared by hardware to force HSI selection when leaving Stop and Standby mode or in case
of failure of the HSE oscillator used directly or indirectly as system clock (if the Clock Security
System is enabled).
00: HSI selected as system clock
01: HSE selected as system clock
10: PLL selected as system clock
11: HSI148 selected as system clock (when available)

6.4.3 Clock interrupt register (RCC_CIR)

Address offset: 0x08
Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
HSI48 | HSI14 | PLL HSE HSI LSE LS|

csse RDYC | RDYC | RDYC | RDYC | RDYC | RDYC | RDYC
w w w w w w w w
15 14 13 12 1" 10 9 8 6 5 4 3 2 1 0

HSI48 | HSI14 | PLL HSE HSI LSE LSI CSSF HSI48 | HSI14 | PLL HSE HSI LSE LSI
RDYIE | RDYIE | RDYIE | RDYIE | RDYIE | RDYIE | RDYIE RDYF | RDYF | RDYF | RDYF | RDYF | RDYF | RDYF

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 CSSC: Clock security system interrupt clear
This bit is set by software to clear the CSSF flag.
0: No effect
1: Clear CSSF flag

3

114/1017 RMO0091 Rev 10

RM0091

Reset and clock control (RCC)

3

Bit 22

Bit 21

Bit 20

Bit 19

Bit 18

Bit 17

Bit 16

Bit 15
Bit 14

Bit 13

Bit 12

HSI48RDYC: HSI48 Ready Interrupt Clear

This bit is set by software to clear the HSI48RDYF flag.

0: No effect
1: Clear HSI48RDYF flag

HSI14RDYC: HSI14 ready interrupt clear

This bit is set by software to clear the HSI14RDYF flag.

0: No effect
1: Clear HSI14RDYF flag

PLLRDYC: PLL ready interrupt clear

This bit is set by software to clear the PLLRDYF flag.
0: No effect
1: Clear PLLRDYF flag

HSERDYC: HSE ready interrupt clear

This bit is set by software to clear the HSERDYF flag.
0: No effect
1: Clear HSERDYF flag

HSIRDYC: HSI ready interrupt clear

This bit is set software to clear the HSIRDYF flag.
0: No effect
1: Clear HSIRDYF flag

LSERDYC: LSE ready interrupt clear

This bit is set by software to clear the LSERDYF flag.
0: No effect
1: LSERDYF cleared

LSIRDYC: LSI ready interrupt clear

This bit is set by software to clear the LSIRDYF flag.
0: No effect
1: LSIRDYF cleared

Reserved, must be kept at reset value.

HSI48RDYIE: HS148 ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the HSI48 oscillator

stabilization.
0: HSI48 ready interrupt disabled
1: HSI48 ready interrupt enabled

HSI14RDYIE: HSI14 ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the HSI14 oscillator

stabilization.
0: HSI14 ready interrupt disabled
1: HSI14 ready interrupt enabled

PLLRDYIE: PLL ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by PLL lock.

0: PLL lock interrupt disabled
1: PLL lock interrupt enabled

RMO0091 Rev 10

115/1017

Reset and clock control (RCC) RMO0091

116/1017

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

HSERDYIE: HSE ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the HSE oscillator
stabilization.

0: HSE ready interrupt disabled
1: HSE ready interrupt enabled

HSIRDYIE: HSI ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the HSI oscillator
stabilization.

0: HSI ready interrupt disabled
1: HSI ready interrupt enabled

LSERDYIE: LSE ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the LSE oscillator
stabilization.

0: LSE ready interrupt disabled
1: LSE ready interrupt enabled

LSIRDYIE: LSI ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the LSI oscillator
stabilization.

0: LSI ready interrupt disabled
1: LSl ready interrupt enabled

CSSF: Clock security system interrupt flag
Set by hardware when a failure is detected in the HSE oscillator.
Cleared by software setting the CSSC bit.

0: No clock security interrupt caused by HSE clock failure

1: Clock security interrupt caused by HSE clock failure

HSI48RDYF: HSI48 ready interrupt flag

Set by hardware when the HSI48 becomes stable and HSI48RDYDIE is set in a response to
setting the HSI480N bit in Clock control register 2 (RCC_CR2). When HSI480N is not set
but the HSI48 oscillator is enabled by the peripheral through a clock request, this bit is not set
and no interrupt is generated.

Cleared by software setting the HSI48RDYC bit.
0: No clock ready interrupt caused by the HSI48 oscillator
1: Clock ready interrupt caused by the HSI48 oscillator

HSI14RDYF: HSI14 ready interrupt flag

Set by hardware when the HSI14 becomes stable and HSI14RDYDIE is set in a response to
setting the HSI140N bit in Clock control register 2 (RCC_CR2). When HSI140N is not set
but the HSI14 oscillator is enabled by the peripheral through a clock request, this bit is not set
and no interrupt is generated.

Cleared by software setting the HSI14RDYC bit.
0: No clock ready interrupt caused by the HSI14 oscillator
1: Clock ready interrupt caused by the HSI14 oscillator

PLLRDYF: PLL ready interrupt flag
Set by hardware when the PLL locks and PLLRDYDIE is set.
Cleared by software setting the PLLRDYC bit.

0: No clock ready interrupt caused by PLL lock

1: Clock ready interrupt caused by PLL lock

3

RMO0091 Rev 10

RMO0091 Reset and clock control (RCC)
Bit 3 HSERDYF: HSE ready interrupt flag
Set by hardware when the HSE clock becomes stable and HSERDYDIE is set.
Cleared by software setting the HSERDYC bit.
0: No clock ready interrupt caused by the HSE oscillator
1: Clock ready interrupt caused by the HSE oscillator
Bit 2 HSIRDYF: HSI ready interrupt flag
Set by hardware when the HSI clock becomes stable and HSIRDYDIE is set in a response to
setting the HSION (refer to Clock control register (RCC_CR)). When HSION is not set but the
HSI oscillator is enabled by the peripheral through a clock request, this bit is not set and no
interrupt is generated.
Cleared by software setting the HSIRDYC bit.
0: No clock ready interrupt caused by the HSI oscillator
1: Clock ready interrupt caused by the HSI oscillator
Bit 1 LSERDYF: LSE ready interrupt flag
Set by hardware when the LSE clock becomes stable and LSERDYDIE is set.
Cleared by software setting the LSERDYC bit.
0: No clock ready interrupt caused by the LSE oscillator
1: Clock ready interrupt caused by the LSE oscillator
Bit 0 LSIRDYF: LSI ready interrupt flag
Set by hardware when the LSI clock becomes stable and LSIRDYDIE is set.
Cleared by software setting the LSIRDYC bit.
0: No clock ready interrupt caused by the LSI oscillator
1: Clock ready interrupt caused by the LS| oscillator
6.4.4 APB peripheral reset register 2 (RCC_APB2RSTR)
Address offset: 0x0C
Reset value: 0x00000 0000
Access: no wait state, word, half-word and byte access
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DBGMCU TIM17 | TIM16 | TIM15
RST RST | RST RST
rw rw w w
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
USART1 SPI1 | TIM1 ADC USART8 | USART7R | USART6 SYSCFG
RST RST | RST RST RST ST RST RST
w w w w rw w w w
Bits 31:23 Reserved, must be kept at reset value.
Bit 22 DBGMCURST: Debug MCU reset
Set and cleared by software.
0: No effect
1: Reset Debug MCU
Bits 21:19 Reserved, must be kept at reset value.
‘,_l RM0091 Rev 10 117/1017

Reset and clock control (RCC)

RM0091

Bit 18

Bit 17

Bit 16

Bit 15
Bit 14

Bit 13
Bit 12

Bit 11

Bit 10
Bit 9

Bit 8
Bit 7

Bit 6

Bit 5

118/1017

TIM17RST: TIM17 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM17 timer

TIM16RST: TIM16 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM16 timer

TIM15RST: TIM15 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM15 timer

Reserved, must be kept at reset value.

USART1RST: USART1 reset
Set and cleared by software.
0: No effect
1: Reset USART1

Reserved, must be kept at reset value.

SPIMRST: SPI1 reset

Set and cleared by software.
0: No effect
1: Reset SPI1

TIM1RST: TIM1 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM1 timer

Reserved, must be kept at reset value.

ADCRST: ADC interface reset
Set and cleared by software.
0: No effect
1: Reset ADC interface

Reserved, must be kept at reset value.

USARTS8RST: USARTS reset
Set and cleared by software
0: No effect
1: Reset USARTS8

USART7RST: USART7 reset
Set and cleared by software
0: No effect
1: Reset USART7
USART6RST: USART6 reset
Set and cleared by software

0: No effect
1: Reset USART6

RMO0091 Rev 10

3

RMO0091 Reset and clock control (RCC)

Bits 4:1 Reserved, must be kept at reset value.

Bit 0 SYSCFGRST: SYSCFG reset
Set and cleared by software.
0: No effect
1: Reset SYSCFG

6.4.5 APB peripheral reset register 1 (RCC_APB1RSTR)

Address offset: 0x10
Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CEC | DAC | PWR CRS CAN USB 12C2 12C1 | USARTS | USART4 | USART3 | USART2
RST | RST RST RST RST RST RST RST RST RST RST RST
w w w w w w w w w w w w
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
SPI2 WWDG TIM14 TIM7 TIM6 TIM3 | TIM2
RST RST RST RST RST RST RST
w w w w w w w

Bit 31 Reserved, must be kept at reset value.

Bit 30 CECRST: HDMI CEC reset
Set and cleared by software.
0: No effect
1: Reset HDMI CEC

Bit 29 DACRST: DAC interface reset
Set and cleared by software.
0: No effect
1: Reset DAC interface

Bit 28 PWRRST: Power interface reset
Set and cleared by software.
0: No effect
1: Reset power interface

Bit 27 CRSRST: Clock recovery system interface reset
Set and cleared by software.
0: No effect
1: Reset CRS interface
Bit 26 Reserved, must be kept at reset value.

Bit 25 CANRST: CAN interface reset
Set and cleared by software.
0: No effect
1: Reset CAN interface

Bit 24 Reserved, must be kept at reset value.

3

RMO0091 Rev 10 119/1017

Reset and clock control (RCC)

RM0091

Bit 23 USBRST: USB interface reset
Set and cleared by software.
0: No effect
1: Reset USB interface

Bit 22 12C2RST: I12C2 reset
Set and cleared by software.
0: No effect
1: Reset 12C2

Bit 21 12C1RST: I12C1 reset
Set and cleared by software.
0: No effect
1: Reset 12C1

Bit 20 USART5RST: USARTS reset
Set and cleared by software.
0: No effect
1: Reset USART4

Bit 19 USART4RST: USART4 reset
Set and cleared by software.
0: No effect
1: Reset USART4

Bit 18 USART3RST: USARTS3 reset
Set and cleared by software.
0: No effect
1: Reset USART3
Bit 17 USART2RST: USART2 reset
Set and cleared by software.

0: No effect
1: Reset USART2

Bits 16:15 Reserved, must be kept at reset value.

Bit 14 SPI2RST: SPI2 reset
Set and cleared by software.
0: No effect
1: Reset SPI2

Bits 13:12 Reserved, must be kept at reset value.

Bit 11 WWDGRST: Window watchdog reset
Set and cleared by software.
0: No effect
1: Reset window watchdog

Bits 10:9 Reserved, must be kept at reset value.

Bit 8 TIM14RST: TIM14 timer reset
Set and cleared by software.

0: No effect
1: Reset TIM14

Bits 7:6 Reserved, must be kept at reset value.

120/1017 RMO0091 Rev 10

3

RM0091

Reset and clock control (RCC)

6.4.6

Note:

Bit 5 TIM7RST: TIM7 timer reset
Set and cleared by software.

0: No effect
1: Reset TIM7

Bit 4 TIM6RST: TIM6 timer reset

Set and cleared by software.

0: No effect
1: Reset TIM6

Bits 3:2 Reserved, must be kept at reset value.

Bit 1 TIM3RST: TIM3 timer reset
Set and cleared by software.

0: No effect
1: Reset TIM3

Bit 0 TIM2RST: TIM2 timer reset
Set and cleared by software.

0: No effect
1: Reset TIM2

AHB peripheral clock enable register (RCC_AHBENR)
Address offset: 0x14
Reset value: 0x0000 0014

Access: no wait state, word, half-word and byte access

When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TSCEN eN | | en | EN | e | en
w w w w w w w
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
CRC FLITF SRAM | DMA2 | DMA
EN EN EN EN EN
w w rw w w

3

Bits 31:25 Reserved, must be kept at reset value.

Bit 24 TSCEN: Touch sensing controller clock enable
Set and cleared by software.

0: TSC clock disabled
1: TSC clock enabled

Bit 23 Reserved, must be kept at reset value.

Bit 22 IOPFEN: I/O port F clock enable
Set and cleared by software.

0: I/O port F clock disabled
1: 1/O port F clock enabled

RMO0091 Rev 10 121/1017

Reset and clock control (RCC)

RM0091

Bit 21

Bit 20

Bit 19

Bit 18

Bit 17

Bits 16:7
Bit 6

Bit 5
Bit 4

Bit 3
Bit 2

Bit 1

Bit 0

122/1017

IOPEEN: 1/O port E clock enable
Set and cleared by software.

0: 1/0O port E clock disabled

1: 1/0O port E clock enabled

IOPDEN: I/O port D clock enable
Set and cleared by software.

0: 1/0O port D clock disabled
1: 1/0 port D clock enabled

IOPCEN: I/O port C clock enable
Set and cleared by software.

0: 1/0O port C clock disabled
1: 1/0O port C clock enabled

IOPBEN: |/O port B clock enable
Set and cleared by software.

0: 1/0O port B clock disabled
1: 1/0O port B clock enabled

IOPAEN: I/O port A clock enable

Set and cleared by software.

0: 1/0O port A clock disabled
1: 1/0O port A clock enabled

Reserved, must be kept at reset value.

CRCEN: CRC clock enable
Set and cleared by software.

0: CRC clock disabled
1: CRC clock enabled

Reserved, must be kept at reset value.

FLITFEN: FLITF clock enable

Set and cleared by software to disable/enable FLITF clock during Sleep mode.

0: FLITF clock disabled during Sleep mode
1: FLITF clock enabled during Sleep mode

Reserved, must be kept at reset value.

SRAMEN: SRAM interface clock enable

Set and cleared by software to disable/enable SRAM interface clock during Sleep mode.

0: SRAM interface clock disabled during Sleep mode.
1: SRAM interface clock enabled during Sleep mode

DMA2EN: DMAZ2 clock enable
Set and cleared by software.
0: DMA2 clock disabled
1: DMAZ2 clock enabled

DMAEN: DMA clock enable
Set and cleared by software.

0: DMA clock disabled
1: DMA clock enabled

RMO0091 Rev 10

3

RMO0091 Reset and clock control (RCC)

6.4.7 APB peripheral clock enable register 2 (RCC_APB2ENR)
Address: 0x18
Reset value: 0x0000 0000
Access: word, half-word and byte access

No wait states, except if the access occurs while an access to a peripheral in the APB
domain is on going. In this case, wait states are inserted until the access to APB peripheral
is finished.

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DBG TIM17 | TIM16 | TIM15
MCUEN EN EN EN
rw rw rw w
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

USART1 SPI1 TIM1 ADC USART8 | USART7 | USART6 SYSCFG
EN EN EN EN EN EN EN COMPEN

w w w w w rw rw w

Bits 31:23 Reserved, must be kept at reset value.

Bit 22 DBGMCUEN MCU debug module clock enable
Set and reset by software.
0: MCU debug module clock disabled
1: MCU debug module enabled

Bits 21:19 Reserved, must be kept at reset value.

Bit 18 TIM17EN: TIM17 timer clock enable
Set and cleared by software.
0: TIM17 timer clock disabled
1: TIM17 timer clock enabled
Bit 17 TIM16EN: TIM16 timer clock enable
Set and cleared by software.
0: TIM16 timer clock disabled
1: TIM16 timer clock enabled
Bit 16 TIM15EN: TIM15 timer clock enable
Set and cleared by software.
0: TIM15 timer clock disabled
1: TIM15 timer clock enabled
Bit 15 Reserved, must be kept at reset value.

Bit 14 USART1EN: USART1 clock enable
Set and cleared by software.
0: USART1clock disabled
1: USART1clock enabled

Bit 13 Reserved, must be kept at reset value.

3

RMO0091 Rev 10 123/1017

Reset and clock control (RCC)

RM0091

Bit 12

Bit 11

Bit 10
Bit 9

Bit 8
Bit 7

Bit 6

Bit 5

Bits 4:1
Bit O

6.4.8 APB peripheral clock enable register 1 (RCC_APB1ENR)

SPIMEN: SPI1 clock enable
Set and cleared by software.
0: SPI1 clock disabled
1: SPI1 clock enabled

TIM1EN: TIM1 timer clock enable
Set and cleared by software.

0: TIM1 timer clock disabled

1: TIM1P timer clock enabled

Reserved, must be kept at reset value.

ADCEN: ADC interface clock enable
Set and cleared by software.

0: ADC interface disabled

1: ADC interface clock enabled

Reserved, must be kept at reset value.

USARTS8EN: USARTS8 clock enable
Set and cleared by software.

0: USARTS8clock disabled

1: USART8clock enabled

USART7EN: USART7 clock enable
Set and cleared by software.

0: USART7clock disabled

1: USART7clock enabled
USARTG6EN: USART®6 clock enable
Set and cleared by software.

0: USART6clock disabled

1: USART6clock enabled

Reserved, must be kept at reset value.

SYSCFGCOMPEN: SYSCFG & COMP clock enable

Set and cleared by software.
0: SYSCFG & COMP clock disabled
1: SYSCFG & COMP clock enabled

Address: 0x1C
Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait state, except if the access occurs while an access to a peripheral on APB domain is
on going. In this case, wait states are inserted until this access to APB peripheral is finished.

Note: When the peripheral clock is not active, the peripheral register values may not be readable

by software and the returned value is always 0x0.

124/1017

RMO0091 Rev 10

3

RM0091

Reset and clock control (RCC)

31

30

29

28 27 26 25 24 23 22 21 20 19 18 17 16

CEC
EN

DAC | PWR CRS CAN UsB 12C2 | 12C1 | USART5 | USART4 | USART3 | USART2
EN EN EN EN EN EN EN EN EN EN

EN

w w w w w w w w w w

15

12 1" 10 9 8 7 6 5 4 3 2 1 0

SPI2
EN

WWDG TIM14 TIM7 TIM6 TIM3 TIM2
EN EN EN EN EN EN

w w w w w w

3

Bit 31
Bit 30

Bit 29

Bit 28

Bit 27

Bit 26
Bit 25

Bit 24
Bit 23

Bit 22

Bit 21

Reserved, must be kept at reset value.

CECEN: HDMI CEC clock enable
Set and cleared by software.

0: HDMI CEC clock disabled

1: HDMI CEC clock enabled

DACEN: DAC interface clock enable
Set and cleared by software.

0: DAC interface clock disabled

1: DAC interface clock enabled

PWREN: Power interface clock enable
Set and cleared by software.

0: Power interface clock disabled

1: Power interface clock enabled

CRSEN: Clock recovery system interface clock enable
Set and cleared by software.

0: CRS interface clock disabled

1: CRS interface clock enabled

Reserved, must be kept at reset value.

CANEN: CAN interface clock enable
Set and cleared by software.

0: CAN interface clock disabled

1: CAN interface clock enabled

Reserved, must be kept at reset value.

USBEN: USB interface clock enable
Set and cleared by software.

0: USB interface clock disabled

1: USB interface clock enabled

12C2EN: 12C2 clock enable
Set and cleared by software.
0: 12C2 clock disabled
1: 12C2 clock enabled

12C1EN: 12C1 clock enable
Set and cleared by software.
0: 12C1 clock disabled
1: 12C1 clock enabled

RMO0091 Rev 10 125/1017

Reset and clock control (RCC)

RM0091

Bit 20 USARTS5EN: USARTS5 clock enable
Set and cleared by software.
0: USARTS5 clock disabled
1: USARTS5 clock enabled

Bit 19 USART4EN: USART4 clock enable
Set and cleared by software.
0: USART4 clock disabled
1: USART4 clock enabled

Bit 18 USART3EN: USART3 clock enable
Set and cleared by software.
0: USARTS3 clock disabled
1: USART3 clock enabled

Bit 17 USART2EN: USART2 clock enable
Set and cleared by software.

0: USART2 clock disabled
1: USART2 clock enabled

Bits 16:15 Reserved, must be kept at reset value.

Bit 14 SPI2EN: SPI2 clock enable
Set and cleared by software.
0: SPI2 clock disabled
1: SPI2 clock enabled

Bits 13:12 Reserved, must be kept at reset value.

Bit 11 WWDGEN: Window watchdog clock enable
Set and cleared by software.
0: Window watchdog clock disabled
1: Window watchdog clock enabled

Bits 10:9 Reserved, must be kept at reset value.

Bit 8 TIM14EN: TIM14 timer clock enable
Set and cleared by software.
0: TIM14 clock disabled
1: TIM14 clock enabled
Bits 7:6 Reserved, must be kept at reset value.

Bit 5 TIM7EN: TIM7 timer clock enable
Set and cleared by software.
0: TIM7 clock disabled
1: TIM7 clock enabled
Bit4 TIMGEN: TIMG6 timer clock enable
Set and cleared by software.
0: TIM6 clock disabled
1: TIM6 clock enabled

Bits 3:2 Reserved, must be kept at reset value.

126/1017 RMO0091 Rev 10

3

RMO0091 Reset and clock control (RCC)
Bit 1 TIM3EN: TIM3 timer clock enable
Set and cleared by software.
0: TIM3 clock disabled
1: TIM3 clock enabled
Bit 0 TIM2EN: TIM2 timer clock enable
Set and cleared by software.
0: TIM2 clock disabled
1: TIM2 clock enabled
6.4.9 RTC domain control register (RCC_BDCR)
Address offset: 0x20
Reset value: 0x0000 0018, reset by RTC domain reset.
Access: 0 < wait state < 3, word, half-word and byte access
Wait states are inserted in case of successive accesses to this register.

Note: The LSEON, LSEBYP, RTCSEL and RTCEN bits of the RTC domain control register
(RCC_BDCR) are in the RTC domain. As a result, after reset, these bits are write-protected
and the DBP bit in the Power control register (PWR_CR) has to be set before they can be
modified. Refer to Section 5.1.3: Battery backup domain for further information. These bits
are only reset after a RTC domain reset (see Section 6.1.3: RTC domain reset). Any internal
or external reset does not have any effect on these bits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
BDRST
w
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
RTC _ _ LSE | LSE
EN RTCSEL[1:0] LSEDRV[1:0] | £vp | rpy |LSEON
w w w w w rw r w

3

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 BDRST: RTC domain software reset
Set and cleared by software.
0: Reset not activated
1: Resets the entire RTC domain

Bit 15 RTCEN: RTC clock enable
Set and cleared by software.

0: RTC clock disabled
1: RTC clock enabled

Bits 14:10 Reserved, must be kept at reset value.

RMO0091 Rev 10 127/1017

Reset and clock control (RCC) RMO0091

Bits 9:8 RTCSEL[1:0]: RTC clock source selection

Bits 7:5
Bits 4:3

Bit 2

Bit 1

Bit 0

Set by software to select the clock source for the RTC. Once the RTC clock source has been
selected, it cannot be changed anymore unless the RTC domain is reset. The BDRST bit can
be used to reset them.

00: No clock

01: LSE oscillator clock used as RTC clock

10: LSI oscillator clock used as RTC clock

11: HSE oscillator clock divided by 32 used as RTC clock

Reserved, must be kept at reset value.

LSEDRV LSE oscillator drive capability

Set and reset by software to modulate the LSE oscillator’s drive capability. A reset of the RTC
domain restores the default value.

00: ‘Xtal mode’ low drive capability

01: ‘Xtal mode’ medium-high drive capability

10: “Xtal mode’ medium-low drive capability

11: ‘Xtal mode’ high drive capability (reset value)
Note: The oscillator is in Xtal mode when it is not in bypass mode.

LSEBYP: LSE oscillator bypass

Set and cleared by software to bypass oscillator in debug mode. This bit can be written only
when the external 32 kHz oscillator is disabled.

0: LSE oscillator not bypassed
1: LSE oscillator bypassed

LSERDY: LSE oscillator ready

Set and cleared by hardware to indicate when the external 32 kHz oscillator is stable. After the
LSEON bit is cleared, LSERDY goes low after 6 external low-speed oscillator clock cycles.

0: LSE oscillator not ready
1: LSE oscillator ready

LSEON: LSE oscillator enable
Set and cleared by software.

0: LSE oscillator OFF
1: LSE oscillator ON

6.4.10 Control/status register (RCC_CSR)
Address: 0x24
Reset value: 0xXXX0 0000, reset by system Reset, except reset flags by power Reset only.
Access: 0 < wait state < 3, word, half-word and byte access
Wait states are inserted in case of successive accesses to this register.
31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
LPWR | WWDG | IWDG | SFT | POR | PIN | OB | o\ive [VIBPWR
RSTF | RSTF | RSTF | RSTF | RSTF | RSTF | LRSTF RSTF
r r r r r r r rt_w r
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
LS
ROy | LSION

128/1017

U

RMO0091 Rev 10

RM0091

Reset and clock control (RCC)

3

Bit 31

Bit 30

Bit 29

Bit 28

Bit 27

Bit 26

Bit 25

Bit 24

Bit 23

LPWRRSTF: Low-power reset flag

Set by hardware when a Low-power management reset occurs.
Cleared by writing to the RMVF bit.

0: No Low-power management reset occurred
1: Low-power management reset occurred

For further information refer to Low-power management reset.

WWDGRSTF: Window watchdog reset flag

Set by hardware when a window watchdog reset occurs.
Cleared by writing to the RMVF bit.

0: No window watchdog reset occurred
1: Window watchdog reset occurred

IWDGRSTF: Independent watchdog reset flag

Set by hardware when an independent watchdog reset from Vpp domain occurs.
Cleared by writing to the RMVF bit.

0: No watchdog reset occurred
1: Watchdog reset occurred

SFTRSTF: Software reset flag

Set by hardware when a software reset occurs.
Cleared by writing to the RMVF bit.

0: No software reset occurred
1: Software reset occurred

PORRSTF: POR/PDR reset flag
Set by hardware when a POR/PDR reset occurs.
Cleared by writing to the RMVF bit.

0: No POR/PDR reset occurred

1: POR/PDR reset occurred

PINRSTF: PIN reset flag
Set by hardware when a reset from the NRST pin occurs.
Cleared by writing to the RMVF bit.

0: No reset from NRST pin occurred

1: Reset from NRST pin occurred

OBLRSTF: Option byte loader reset flag
Set by hardware when a reset from the OBL occurs.
Cleared by writing to the RMVF bit.

0: No reset from OBL occurred

1: Reset from OBL occurred

RMVF: Remove reset flag

Set by software to clear the reset flags including RMVF.
0: No effect
1: Clear the reset flags

V18PWRRSTF: Reset flag of the 1.8 V domain.
Set by hardware when a POR/PDR of the 1.8 V domain occurred.
Cleared by writing to the RMVF bit.

0: No POR/PDR reset of the 1.8 V domain occurred
1: POR/PDR reset of the 1.8 V domain occurred

Caution: On the STM32F0x8 family, this flag must be read as reserved.

RMO0091 Rev 10 129/1017

Reset and clock control (RCC) RMO0091

Bits 22:2 Reserved, must be kept at reset value.

Bit 1 LSIRDY: LSl oscillator ready

Set and cleared by hardware to indicate when the LS| oscillator is stable. After the LSION bit is
cleared, LSIRDY goes low after 3 LSl oscillator clock cycles.

0: LSI oscillator not ready
1: LSl oscillator ready

Bit 0 LSION: LSI oscillator enable
Set and cleared by software.
0: LSI oscillator OFF
1: LSl oscillator ON

6.4.11 AHB peripheral reset register (RCC_AHBRSTR)

Address: 0x28
Reset value: 0x0000 0000

Access: no wait states, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TSC IOPF | IOPE | IOPD | IOPC | IOPB IOPA
RST RST RST RST RST RST RST
w w w w w w w
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Bits 31:25 Reserved, must be kept at reset value.

Bit 24 TSCRST: Touch sensing controller reset
Set and cleared by software.

0: No effect
1: Reset TSC

Bit 23 Reserved, must be kept at reset value.

Bit 22 IOPFRST: I/O port F reset
Set and cleared by software.

0: No effect
1: Reset I/O port F

Bit 21 IOPERST: I/O port E reset
Set and cleared by software.
0: No effect
1: Reset I/O port E

Bit 20 IOPDRST: I/O port D reset
Set and cleared by software.

0: No effect
1: Reset I/O port D

3

130/1017 RMO0091 Rev 10

RM0091

Reset and clock control (RCC)

Bit 19 IOPCRST: I/O port C reset
Set and cleared by software.
0: No effect
1: Reset I/O port C
Bit 18 IOPBRST: I/O port B reset
Set and cleared by software.
0: No effect
1: Reset I/O port B
Bit 17 IOPARST: I/O port A reset
Set and cleared by software.
0: No effect
1: Reset I/0O port A

Bits 16:0 Reserved, must be kept at reset value.

6.4.12 Clock configuration register 2 (RCC_CFGR2)

Address: 0x2C
Reset value: 0x0000 0000

Access: no wait states, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PREDIV[3:0]
Bits 31:4 Reserved, must be kept at reset value.
‘Yl RM0091 Rev 10 131/1017

Reset and clock control (RCC) RMO0091

6.4.13

Bits 3:0 PREDIV[3:0] PREDIV division factor

These bits are set and cleared by software to select PREDIV division factor. They can be
written only when the PLL is disabled.
Note: Bit 0 is the same bit as bit 17 in Clock configuration register (RCC_CFGR), so
modifying bit 17 in Clock configuration register (RCC_CFGR) also modifies bit 0 in
Clock configuration register 2 (RCC_CFGR2) (for compatibility with other STM32
products)
0000: PREDIV input clock not divided
0001: PREDIV input clock divided by 2
0010: PREDIV input clock divided by 3
0011: PREDIV input clock divided by 4
0100: PREDIV input clock divided by 5
0101: PREDIV input clock divided by 6
0110: PREDIV input clock divided by 7
0111: PREDIV input clock divided by 8
1000: PREDIV input clock divided by 9
1001: PREDIV input clock divided by 10
1010: PREDIV input clock divided by 11
1011: PREDIV input clock divided by 12
1100: PREDIV input clock divided by 13
1101: PREDIV input clock divided by 14
1110: PREDIV input clock divided by 15
1111: PREDIV input clock divided by 16

Clock configuration register 3 (RCC_CFGR3)

Address: 0x30
Reset value: 0x0000 0000

Access: no wait states, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
USART3SW[1:0] | USART2SWI[1:0]

w w w ‘ w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Aé':\’/ff %?/\',3 CS'\E,S; 'éc\/:\; USART1SWI[1:0]

w rw rw w rw ‘ w

132/1017

Bits 31:20 Reserved, must be kept at reset value.

Bits 19:18 USART3SWI[1:0]: USART3 clock source selection (available only on STM32F09x devices)

This bit is set and cleared by software to select the USARTS3 clock source.
00: PCLK selected as USART3 clock source (default)
01: System clock (SYSCLK) selected as USART3 clock
10: LSE clock selected as USART3 clock
11: HSI clock selected as USART3 clock

3

RMO0091 Rev 10

RM0091

Reset and clock control (RCC)

6.4.14

3

Bits 17:16 USART2SWI[1:0]: USART?2 clock source selection (available only on STM32F07x and
STM32F09x devices)

This bit is set and cleared by software to select the USART2 clock source.
00: PCLK selected as USART2 clock source (default)
01: System clock (SYSCLK) selected as USART2 clock
10: LSE clock selected as USART2 clock
11: HSI clock selected as USART2 clock

Bits 15:9 Reserved, must be kept at reset value.
Bit 8 ADCSW: ADC clock source selection

Obsolete setting. To be kept at reset value, connecting the HSI14 clock to the ADC
asynchronous clock input. Proper ADC clock selection is done inside the ADC_CFGR2 (refer
to Section 13.11.5: ADC configuration register 2 (ADC_CFGR2) on page 271).
Bit 7 USBSW: USB clock source selection
This bit is set and cleared by software to select the USB clock source.
0: HSI48 clock selected as USB clock source (default)
1: PLL clock (PLLCLK) selected as USB clock

Bit6 CECSW: HDMI CEC clock source selection
This bit is set and cleared by software to select the CEC clock source.
0: HSI clock, divided by 244, selected as CEC clock (default)
1: LSE clock selected as CEC clock

Bit 5 Reserved, must be kept at reset value.

Bit 4 12C1SW: 12C1 clock source selection
This bit is set and cleared by software to select the 12C1 clock source.

0: HSI clock selected as 12C1 clock source (default)
1: System clock (SYSCLK) selected as 12C1 clock

Bits 3:2 Reserved, must be kept at reset value.

Bits 1:0 USART1SWI[1:0]: USART1 clock source selection
This bit is set and cleared by software to select the USART1 clock source.
00: PCLK selected as USART1 clock source (default)
01: System clock (SYSCLK) selected as USART1 clock
10: LSE clock selected as USART1 clock
11: HSI clock selected as USART1 clock

Clock control register 2 (RCC_CR2)

Address: 0x34
Reset value: 0xXX00 XX80, where X is undefined.

Access: no wait states, word, half-word and byte access

RMO0091 Rev 10 133/1017

Reset and clock control (RCC) RMO0091

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
. HSI48 | HSI48

HSI48CAL[7:0] RDY oN

r | r ‘ r | r ‘ r ‘ r ‘ r ‘ r r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
) . HSI14 | HSIM4 | HSI14

HSI14CAL[7:0] HSI14TRIM[4:0] ois | RDY oN

r | r ‘ r | r ‘ r ‘ r ‘ r ‘ r w | rw ‘ w ‘ w ‘ rw w r rw

Bits 31:24 HSI48CAL[7:0]: HSI48 factory clock calibration

Bits 23:18
Bit 17

Bit 16

Bits 15:8

Bits 7:3

Bit 2

Bit 1

134/1017

These bits are initialized automatically at startup and are read-only.
Reserved, must be kept at reset value.

HSI48RDY: HSI48 clock ready flag

Set by hardware to indicate that HS148 oscillator is stable. After the HSI480N bit is cleared,
HSI48RDY goes low after 6 HS148 oscillator clock cycles.

0: HS148 oscillator not ready
1: HS148 oscillator ready

HSI480N: HSI48 clock enable

Set and cleared either by software or by hardware. Set by hardware when the USB peripheral
is enabled and switched on this source; reset by hardware to stop the oscillator when entering
in Stop or Standby mode. This bit cannot be reset if the HSI148 is used directly or indirectly as
system clock or is selected to become the system clock.

0: HSI148 oscillator OFF
1: HSI48 oscillator ON

HSI14CAL[7:0]: HSI14 clock calibration
These bits are initialized automatically at startup.

HSI14TRIM[4:0]: HSI14 clock trimming

These bits provide an additional user-programmable trimming value that is added to the
HSI14CAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature
that influence the frequency of the HSI14.

The default value is 16, which, when added to the HSI14CAL value, should trim the HSI14 to
14 MHz £ 1%. The trimming step is around 50 kHz between two consecutive HSI14CAL steps.

HSI114DIS HSI14 clock request from ADC disable

Set and cleared by software.

When set this bit prevents the ADC interface from enabling the HSI14 oscillator.
0: ADC interface can turn on the HSI14 oscillator
1: ADC interface can not turn on the HSI14 oscillator

HSI14RDY: HSI14 clock ready flag
Set by hardware to indicate that HSI14 oscillator is stable. After the HSI14ON bit is cleared,
HSI14RDY goes low after 6 HS114 oscillator clock cycles. When HSI140N is not set but the
HSI14 oscillator is enabled by the peripheral through a clock request, this bit is not set.

0: HSI14 oscillator not ready

1: HSI14 oscillator ready

3

RMO0091 Rev 10

RMO0091 Reset and clock control (RCC)

Bit 0 HSI140ON: HSI14 clock enable
Set and cleared by software. When the HSI14 oscillator is enabled by the peripheral through a
clock request, this bit is not set and resetting it does not stop the HSI14 oscillator.
0: HSI14 oscillator OFF
1: HSI14 oscillator ON

3

RMO0091 Rev 10 135/1017

RM0091

Reset and clock control (RCC)

RCC register map

6.4.15

The following table gives the RCC register map and the reset values.

Table 19. RCC register map and reset values

0 NOISH |~ | =& || JAQHIST [©|1SYD4OSAS|O| LSHZWIL |©| NIVANQ |© [NIJNODDHOSAS|O| NIZWIL [©[NO3ST|©| NOIST |©

b JrauisH|=| ?= |o| Jaqu3si |o LSMEWIL |©| NIzgwva | NIEWIL |© |AQ¥3se| Aadis1 |°@

[4 m S |©] dAQuISH |° NIWVHS [~ dAgasi|e

€ s 1oL @ = |o| dAQy3sH |° w>g |°

14 = o = ©| JAadT1d |° L1SM9NL |©| N3dLnd |— NIgWIL |[o |~ O = |o

S w ©] m © | 4AQY PLISH |© | 1SH91MVYSN [© | LSHZNL |° NIOLMVSN |2 NIZWIL |©

9 % | & © | JAQM8YISH |© | 1sd.1dvsn |© NIO®0 || Naivsn |©

L T - ©| 4880 |o]|isdsldvsn | NIgLdvsSN |©

8 | o [©] JaauisT |© LSHPLNIL [© NITLNLL [© [0 25 |2

6 °| & |o]3aay3si|o| iswoav |° N3oav ° xO= o

oL 5 [o] o| FAaQHISH |©

4 M ° JIAQHISH [©| LISHIWIL [© | 1SHDAMM |© NI LNILL © | NIOaMM |©

(4" m ° JAQYTId [©| L1sdlidSs |© N3LIdS °

€l T |o 3IAQY vLISH|©

145 © | 3dd 0QV |© | JIAQM8YISH [© | 1SHL1¥YSN [© | LSyzidS |@ NILLYVSN [©| N3eids |°

Sl o |[0lodsTid|o N3OLY [©

9L |No3sH [o [[1odsTid|o | oaaMisT [©| L1susiwiL [© N3 SLINIL °© 1s¥as |©

Ll | gyasH |©|3UdIXTTd|© | 0AQHIST |©| LSH9LWIL [©|1syziyvsn|©| N3vdol |[© N3 9LINIL © |NJzLdvsn|©

8l |dAgasH|e W ©| OAQHISH |©| LISHZLNIL |©|ls¥eldvsn|©| N3gdol | N3 ZLINIL © |NJeLdvsSNn|©

6l |Nosso e = © | JAQY3SH |° 1S¥p1¥vysn|®| N30dOol |° NIrLdvsSn|©

0c 2 ©| oAQdTd |© L1SHSLYVSN|© [LS¥pLdvSN|© NISLHVSN|©

14 T © |OAQY pLISH|® 1sy1ozl || N33dol |o N3LozZI |©

[44 DAQYSYISH |° | synowoga [©| 1S¥zozl |©| N3ddol |©| Nanowsogd [©| Nazozl |°

€¢ 08s0 |°@ Lsygsn |© N3gsn |°

¥Z INnoT1d | = ° NJOSL |© JANY X

ST |rad1dle e o LSUNYD |© NINVD |© d1sy1g0 X

9¢ 3 o 41S¥NId |X

L2 = o 1S¥SHO |© NISHO |© disydod |X

8¢ g_|° 1sydmd |° NIFUMd |© 41sd1ds |X

6c & g e lsyova [N3ovd |® 41849ami [X

0¢€ g o 1S¥030 |° N3030 |° 41SHOAMM X

Le AIQON T1d|© ‘soy 41SdMmdT X
14 14 4 '3

s |« 2| 5 2| « (3 2 3| B g £ 5] & 3] £ |3 % |3 & |

h7 o |2 5 g o, g a g &0 g @ g @ g @ g 2 IS 33 g

2|8 13 ¢ 38l ¢ 13 % 13 % |3 < 3 = (3 = 3 4 3 & |3

e | |& ¢ | = & o & o & g & 9 g9 1Bl g g =2 &
e o © © ©

© o < © 6] =] < © O o <

& R R <) 2 X * % < X

..OI S S S S 3 S S S S S

RMO0091 Rev 10

136/1017

RMO0091 Reset and clock control (RCC)

Table 19. RCC register map and reset values (continued)

Offset| Register |5/2|QIRIN|QIQ(I|RQINIS|IQ2I2[=|2|2(3|2|Nz|2]o|o|~|o|w|¢|o|~|-|o
[== ===]=
%) 0 ln|ln v v ln
¥ | | (o
RCC_AHBRSTR @ | |xE
ox2s [RO gl EER g% |E
F el=0|Q Q|2
Reset value 0 o|jojof0|0OfoO
ox2c | RCC_CFGR2 PREDIV[3:0]
Reset value ofoJoJo
= = =
8- |8&= 22z 2 2
oxao | RCC_CFGRS P2 ED 3183 |2 2
<= <= Qo |w O =
%) 1% < [D|O N)
) 2 o)
Reset value 0 0 0|j0f|0 0 0|0
|2 23|z
[a]
0x34 RCC_CR2 HSI48CAL[7:0] § @ HSI14CAL[7:0] HSM4TRIM[14:0] | ¥ |5 |2
" @ |2 % |5 @
TI|T I|T|T
Resetvalue [X]X[X[X]X]X]X]X 0o [X]X]X]IX[X[X]Xx[X]1]oJoJo]o]o]o]0

Refer to Section 2.2 on page 46 for the register boundary addresses.

3

RMO0091 Rev 10 137/1017

Clock recovery system (CRS) RMO0091

7

71

7.2

7.3

138/1017

Clock recovery system (CRS)

This section applies to STM32F04x, STM32F07x and STM32F09x devices only.

Introduction

The clock recovery system (CRS) is an advanced digital controller acting on the internal
fine-granularity trimmable RC oscillator HSI48. The CRS provides powerful means for
oscillator output frequency evaluation, based on comparison with a selectable
synchronization signal. It is capable of doing automatic adjustment of oscillator trimming
based on the measured frequency error value, while keeping the possibility of a manual
trimming.

The CRS is ideally suited to provide a precise clock to the USB peripheral. In such case, the
synchronization signal can be derived from the start-of-frame (SOF) packet signalization on
the USB bus, which is sent by a USB host at 1 ms intervals.

The synchronization signal can also be derived from the LSE oscillator output, from an
external pin, or it can be generated by user software.

CRS main features

e Selectable synchronization source with programmable prescaler and polarity:
— External pin
— LSE oscillator output
— USB SOF packet reception
e Possibility to generate synchronization pulses by software
e Automatic oscillator trimming capability with no need of CPU action
e Manual control option for faster start-up convergence
e 16-bit frequency error counter with automatic error value capture and reload
e Programmable limit for automatic frequency error value evaluation and status reporting
e Maskable interrupts/events:
— Expected synchronization (ESYNC)
— Synchronization OK (SYNCOK)
— Synchronization warning (SYNCWARN)
— Synchronization or trimming error (ERR)

CRS implementation

Table 20. CRS features

Feature CRS1

TRIM width 6 bits

3

RMO0091 Rev 10

RMO0091 Clock recovery system (CRS)
7.4 CRS functional description
7.41 CRS block diagram
Figure 14. CRS block diagram
CRS_SYNC
GPIO
SYNCSRC SWSYNC
0SC32_IN #{ Y
) LSE > > (/1872N/C4dwi?1e;8)
0SC32_0uT 12,14,
> SYNC
N use |
USB_DM
A
TRIM |e— FEDIR || FECAP
y A
RCC A 4
RC 48 MHz > 16-bit counter
RELOAD
HSI48 . To SYSCLK,
PLL and to USB MSv32121V2
7.4.2 Synchronization input

3

The CRS synchronization (SYNC) source, selectable through the CRS_CFGR register, can
be the signal from the external CRS_SYNC pin, the LSE clock or the USB SOF signal. For a
better robustness of the SYNC input, a simple digital filter (2 out of 3 majority votes,
sampled by the RC48 clock) is implemented to filter out any glitches. This source signal also
has a configurable polarity and can then be divided by a programmable binary prescaler to
obtain a synchronization signal in a suitable frequency range (usually around 1 kHz).

For more information on the CRS synchronization source configuration, refer to
Section 7.7.2: CRS configuration register (CRS_CFGR).

It is also possible to generate a synchronization event by software, by setting the SWSYNC
bit in the CRS_CR register.

RMO0091 Rev 10 139/1017

Clock recovery system (CRS) RMO0091

743 Frequency error measurement

The frequency error counter is a 16-bit down/up counter which is reloaded with the RELOAD
value on each SYNC event. It starts counting down till it reaches the zero value, where the
ESYNC (expected synchronization) event is generated. Then it starts counting up to the
OUTRANGE limit where it eventually stops (if no SYNC event is received) and generates a
SYNCMISS event. The OUTRANGE limit is defined as the frequency error limit (FELIM field
of the CRS_CFGR register) multiplied by 128.

When the SYNC event is detected, the actual value of the frequency error counter and its
counting direction are stored in the FECAP (frequency error capture) field and in the FEDIR
(frequency error direction) bit of the CRS_ISR register. When the SYNC event is detected
during the downcounting phase (before reaching the zero value), it means that the actual
frequency is lower than the target (and so, that the TRIM value must be incremented), while
when it is detected during the upcounting phase it means that the actual frequency is higher
(and that the TRIM value must be decremented).

Figure 15. CRS counter behavior

CRS counter value
A
RELOAD _|
AY]
ESYNC
QV‘” U/pv
Frequency
OUTRANGE error counter
(128 X FELIM) N ~N 000000 ! B stopped
WARNING LIMIT ! |
(3xFELIM) | l 77 J
TOLERANCE LIMIT 3 |
(FELIM) b N
b)) : L P : >
«C | T T : >
Trimming action: 0 | +2 P41 0 -1 -2 1 0
CRS event: SYNCERR ' SYNCWARN | SYNCOK | SYNCWARN |
SYNCMISS
744 Frequency error evaluation and automatic trimming

The measured frequency error is evaluated by comparing its value with a set of limits:
e TOLERANCE LIMIT, given directly in the FELIM field of the CRS_CFGR register
e WARNING LIMIT, defined as 3 x FELIM value

e OUTRANGE (error limit), defined as 128 x FELIM value

140/1017 RMO0091 Rev 10 ‘Yl

RM0091

Clock recovery system (CRS)

Note:

7.4.5

3

The result of this comparison is used to generate the status indication and also to control the
automatic trimming which is enabled by setting the AUTOTRIMEN bit in the CRS_CR
register:

e When the frequency error is below the tolerance limit, it means that the actual trimming
value in the TRIM field is the optimal one, hence no trimming action is needed.

— SYNCOK status indicated
— TRIM value not changed in AUTOTRIM mode

e When the frequency error is below the warning limit but above or equal to the tolerance
limit, it means that some trimming action is necessary but that adjustment by one
trimming step is enough to reach the optimal TRIM value.

— SYNCOK status indicated
— TRIM value adjusted by one trimming step in AUTOTRIM mode

e When the frequency error is above or equal to the warning limit but below the error
limit, it means that a stronger trimming action is necessary, and there is a risk that the
optimal TRIM value is not reached for the next period.

— SYNCWARN status indicated
— TRIM value adjusted by two trimming steps in AUTOTRIM mode

e When the frequency error is above or equal to the error limit, it means that the
frequency is out of the trimming range. This can also happen when the SYNC input is
not clean or when some SYNC pulse is missing (for example when one USB SOF is
corrupted).

— SYNCERR or SYNCMISS status indicated
— TRIM value not changed in AUTOTRIM mode

If the actual value of the TRIM field is so close to its limits that the automatic trimming would
force it to overflow or underflow, then the TRIM value is set just to the limit and the
TRIMOVF status is indicated.

In AUTOTRIM mode (AUTOTRIMEN bit set in the CRS_CR register), the TRIM field of
CRS_CR is adjusted by hardware and is read-only.

CRS initialization and configuration

RELOAD value

The RELOAD value must be selected according to the ratio between the target frequency
and the frequency of the synchronization source after prescaling. It is then decreased by
one to reach the expected synchronization on the zero value. The formula is the following:

RELOAD = (frarceTt / fsyne) - 1

The reset value of the RELOAD field corresponds to a target frequency of 48 MHz and a
synchronization signal frequency of 1 kHz (SOF signal from USB).

FELIM value

The selection of the FELIM value is closely coupled with the HSI148 oscillator characteristics
and its typical trimming step size. The optimal value corresponds to half of the trimming step
size, expressed as a number of HSI48 oscillator clock ticks. The following formula can be
used:

FELIM = (frargeT / fsyne) * STEP[%] / 100% / 2

RMO0091 Rev 10 141/1017

Clock recovery system (CRS)

RM0091

Note:

Caution:

7.5

7.6

142/1017

The result must be always rounded up to the nearest integer value to obtain the best
trimming response. If frequent trimming actions are not needed in the application, the
hysteresis can be increased by slightly increasing the FELIM value.

The reset value of the FELIM field corresponds to (frargeT / fsync) = 48000 and to a typical

trimming step size of 0.14%.

The trimming step size depends upon the product, check the datasheet for accurate setting.

There is no hardware protection from a wrong configuration of the RELOAD and FELIM
fields which can lead to an erratic trimming response. The expected operational mode
requires proper setup of the RELOAD value (according to the synchronization source
frequency), which is also greater than 128 * FELIM value (OUTRANGE limit).

CRS low-power modes

Table 21. Effect of low-power modes on CRS

Mode Description
Sleep No effect. CRS interrupts cause the device to exit the Sleep mode.
Stop CRS registers are frozen. The CRS stops operating until the Stop mode is exited and the

HSI148 oscillator restarted.

Standby | The CRS peripheral is powered down and must be reinitialized after exiting Standby mode.

CRS interrupts

Table 22. Interrupt control bits

Enable Clear
Interrupt event Event flag control bit flag bit
Expected synchronization ESYNCF ESYNCIE ESYNCC
Synchronization OK SYNCOKF SYNCOKIE SYNCOKC
Synchronization warning SYNCWARNF | SYNCWARNIE | SYNCWARNC
Synchronization or trimming error ERRF ERRIE ERRC

(TRIMOVF, SYNCMISS, SYNCERR)

RMO0091 Rev 10

3

RMO0091 Clock recovery system (CRS)
7.7 CRS registers
Refer to Section 1.2 on page 42 for a list of abbreviations used in register descriptions.
The peripheral registers can be accessed only by words (32-bit).
7.71 CRS control register (CRS_CR)
Address offset: 0x00
Reset value: 0x0000 2000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SW | AUTO ESYNCI SYNC | SYNC
TRIMI5:0] sYNC |TRIMEN| CEN E | ERRE | WARNIE| OKIE
rw|nN|rw|rw|rw|nN twl [rw w w w w rw
Bits 31:14 Reserved, must be kept at reset value.

3

Bits 13:8

Bit 7

Bit 6

Bit 5

Bit 4
Bit 3

TRIM[5:0]: HS148 oscillator smooth trimming

These bits provide a user-programmable trimming value to the HS148 oscillator. They can be
programmed to adjust to variations in voltage and temperature that influence the frequency
of the HS148 oscillator.

The default value is 32, which corresponds to the middle of the trimming interval. The
trimming step is specified in the product datasheet. A higher TRIM value corresponds to a
higher output frequency.

When the AUTOTRIMEN bit is set, this field is controlled by hardware and is read-only.

SWSYNC: Generate software SYNC event
This bit is set by software in order to generate a software SYNC event. It is automatically
cleared by hardware.
0: No action
1: A software SYNC event is generated.

AUTOTRIMEN: Automatic trimming enable

This bit enables the automatic hardware adjustment of TRIM bits according to the measured
frequency error between two SYNC events. If this bit is set, the TRIM bits are read-only. The
TRIM value can be adjusted by hardware by one or two steps at a time, depending on the
measured frequency error value. Refer to Section 7.4.4 for more details.

0: Automatic trimming disabled, TRIM bits can be adjusted by the user.

1: Automatic trimming enabled, TRIM bits are read-only and under hardware control.

CEN: Frequency error counter enable
This bit enables the oscillator clock for the frequency error counter.
0: Frequency error counter disabled
1: Frequency error counter enabled
When this bit is set, the CRS_CFGR register is write-protected and cannot be modified.

Reserved, must be kept at reset value.

ESYNCIE: Expected SYNC interrupt enable
0: Expected SYNC (ESYNCF) interrupt disabled
1: Expected SYNC (ESYNCF) interrupt enabled

RMO0091 Rev 10 143/1017

Clock recovery system (CRS)

RM0091

Bit 2 ERRIE: Synchronization or trimming error interrupt enable

0: Synchronization or trimming error (ERRF) interrupt disabled
1: Synchronization or trimming error (ERRF) interrupt enabled

Bit 1 SYNCWARNIE: SYNC warning interrupt enable

0: SYNC warning (SYNCWARNF) interrupt disabled
1: SYNC warning (SYNCWARNF) interrupt enabled

Bit 0 SYNCOKIE: SYNC event OK interrupt enable
0: SYNC event OK (SYNCOKF) interrupt disabled
1: SYNC event OK (SYNCOKEF) interrupt enabled

7.7.2 CRS configuration register (CRS_CFGR)
This register can be written only when the frequency error counter is disabled (CEN bit is
cleared in CRS_CR). When the counter is enabled, this register is write-protected.
Address offset: 0x04
Reset value: 0x2022 BB7F
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
SYNCPOL SYNCSRC[1:0] SYNCDIV[2:0] FELIM[7:0]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RELOAD[15:0]
Bit 31 SYNCPOL: SYNC polarity selection
This bit is set and cleared by software to select the input polarity for the SYNC signal source.
0: SYNC active on rising edge (default)
1: SYNC active on falling edge
Bit 30 Reserved, must be kept at reset value.
Bits 29:28 SYNCSRC[1:0]: SYNC signal source selection
These bits are set and cleared by software to select the SYNC signal source.
00: GPIO selected as SYNC signal source
01: LSE selected as SYNC signal source
10: USB SOF selected as SYNC signal source (default).
11: Reserved
Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the
periodic USB SOF is not generated by the host. No SYNC signal is therefore provided
to the CRS to calibrate the HSI48 oscillator on the run. To guarantee the required clock
precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs
should be used as SYNC signal.
Bit 27 Reserved, must be kept at reset value.
144/1017 RMO0091 Rev 10 1S7]

RMO0091 Clock recovery system (CRS)

Bits 26:24 SYNCDIV[2:0]: SYNC divider
These bits are set and cleared by software to control the division factor of the SYNC signal.
000: SYNC not divided (default)
001: SYNC divided by 2
010: SYNC divided by 4
011: SYNC divided by 8
100: SYNC divided by 16
101: SYNC divided by 32
110: SYNC divided by 64
111: SYNC divided by 128

Bits 23:16 FELIM[7:0]: Frequency error limit

FELIM contains the value to be used to evaluate the captured frequency error value latched
in the FECAP[15:0] bits of the CRS_ISR register. Refer to Section 7.4.4 for more details
about FECAP evaluation.

Bits 15:0 RELOADI[15:0]: Counter reload value
RELOAD is the value to be loaded in the frequency error counter with each SYNC event.
Refer to Section 7.4.3 for more details about counter behavior.

7.7.3 CRS interrupt and status register (CRS_ISR)

Address offset: 0x08
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
FECAP[15:0]
r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
RS comer] e | e | e

r r r r r r r r

Bits 31:16 FECAP[15:0]: Frequency error capture

FECAP is the frequency error counter value latched in the time of the last SYNC event.
Refer to Section 7.4.4 for more details about FECAP usage.

Bit 15 FEDIR: Frequency error direction
FEDIR is the counting direction of the frequency error counter latched in the time of the last
SYNC event. It shows whether the actual frequency is below or above the target.
0: Upcounting direction, the actual frequency is above the target.
1: Downcounting direction, the actual frequency is below the target.

Bits 14:11 Reserved, must be kept at reset value.

Bit 10 TRIMOVF: Trimming overflow or underflow
This flag is set by hardware when the automatic trimming tries to over- or under-flow the
TRIM value. An interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is
cleared by software by setting the ERRC bit in the CRS_ICR register.
0: No trimming error signalized
1: Trimming error signalized

3

RMO0091 Rev 10 145/1017

Clock recovery system (CRS) RMO0091

146/1017

Bit 9 SYNCMISS: SYNC missed

This flag is set by hardware when the frequency error counter reached value FELIM * 128
and no SYNC was detected, meaning either that a SYNC pulse was missed or that the
frequency error is too big (internal frequency too high) to be compensated by adjusting the
TRIM value, and that some other action has to be taken. At this point, the frequency error
counter is stopped (waiting for a next SYNC) and an interrupt is generated if the ERRIE bit is
setin the CRS_CR register. It is cleared by software by setting the ERRC bit in the CRS_ICR
register.

0: No SYNC missed error signalized

1: SYNC missed error signalized

Bit 8 SYNCERR: SYNC error

This flag is set by hardware when the SYNC pulse arrives before the ESYNC event and the
measured frequency error is greater than or equal to FELIM * 128. This means that the
frequency error is too big (internal frequency too low) to be compensated by adjusting the
TRIM value, and that some other action has to be taken. An interrupt is generated if the
ERRIE bit is set in the CRS_CR register. It is cleared by software by setting the ERRC bit in
the CRS_ICR register.

0: No SYNC error signalized

1: SYNC error signalized

Bits 7:4 Reserved, must be kept at reset value.

Bit 3 ESYNCF: Expected SYNC flag

This flag is set by hardware when the frequency error counter reached a zero value. An
interrupt is generated if the ESYNCIE bit is set in the CRS_CR register. It is cleared by
software by setting the ESYNCC bit in the CRS_ICR register.

0: No expected SYNC signalized

1: Expected SYNC signalized

Bit 2 ERREF: Error flag

This flag is set by hardware in case of any synchronization or trimming error. It is the logical
OR of the TRIMOVF, SYNCMISS and SYNCERR bits. An interrupt is generated if the ERRIE
bit is set in the CRS_CR register. It is cleared by software in reaction to setting the ERRC bit
in the CRS_ICR register, which clears the TRIMOVF, SYNCMISS and SYNCERR bits.

0: No synchronization or trimming error signalized

1: Synchronization or trimming error signalized

Bit 1 SYNCWARNF: SYNC warning flag

This flag is set by hardware when the measured frequency error is greater than or equal to
FELIM * 3, but smaller than FELIM * 128. This means that to compensate the frequency
error, the TRIM value must be adjusted by two steps or more. An interrupt is generated if the
SYNCWARNIE bit is set in the CRS_CR register. It is cleared by software by setting the
SYNCWARNC bit in the CRS_ICR register.

0: No SYNC warning signalized

1: SYNC warning signalized

Bit 0 SYNCOKF: SYNC event OK flag

This flag is set by hardware when the measured frequency error is smaller than FELIM * 3.
This means that either no adjustment of the TRIM value is needed or that an adjustment by
one trimming step is enough to compensate the frequency error. An interrupt is generated if
the SYNCOKIE bit is set in the CRS_CR register. It is cleared by software by setting the
SYNCOKC bit in the CRS_ICR register.

0: No SYNC event OK signalized

1: SYNC event OK signalized

3

RMO0091 Rev 10

RMO0091 Clock recovery system (CRS)

7.74 CRS interrupt flag clear register (CRS_ICR)

Address offset: 0x0C
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
SYNC | SYNC
ESYNCC | ERRC WARNC | OKC
w w w w

Bits 31:4 Reserved, must be kept at reset value.

Bit 3 ESYNCC: Expected SYNC clear flag
Writing 1 to this bit clears the ESYNCF flag in the CRS_ISR register.

Bit 2 ERRC: Error clear flag

Writing 1 to this bit clears TRIMOVF, SYNCMISS and SYNCERR bits and consequently also
the ERRF flag in the CRS_ISR register.

Bit 1 SYNCWARNC: SYNC warning clear flag
Writing 1 to this bit clears the SYNCWARNF flag in the CRS_ISR register.

Bit0 SYNCOKC: SYNC event OK clear flag
Writing 1 to this bit clears the SYNCOKF flag in the CRS_ISR register.

7.7.5 CRS register map

Table 23. CRS register map and reset values

Offset | Register |51 31 Q1 Q|IN| Q| QIR QKT 22T 2V E|S oo ~0 1| <o ||
z w
w z|W
2lz].| |BlulZ|E
CRS_CR TRIM[5:0] olE| @ ZlEizig
0x00 ;90 nlu|Q|g
n|5 w 2%
< n
Reset value 1‘0‘0‘0‘0‘000000000
-
2| |SsYNC SYNC
CRS_CFGR | © SRC DIV FELIM[7:0] RELOAD[15:0]
0x04 g [1:0] [2:0]
)
Reset value | 0 1‘0 o‘o|o o‘o|1‘o‘o|o‘1‘o tlol1lalalola|1]olaa]a]1]1]1]1
0 =
@ Lol g '-GLan"x"
= Ol S| w okl <o
CRS_ISR FECAP[15:0] a =3l o AEdEdRS]
0x08 o EEE mu%i
=l ol »n w >| 0
%)
Reset value 0‘0‘0‘o|o‘o‘o|o‘o‘o|o‘o‘o|o‘o‘oo o|o|o o|o|o]o

3

RMO0091 Rev 10 147/1017

Clock recovery system (CRS)

RM0091

Table 23. CRS register map and reset values (continued)

Offset | Register | 5/ 2 Q| XN & QI K J| K2 T2 2T Q=2

- Q| ® N OIW T MAN QIO ONMNOWBINAN«O gl

3

2
1
0

2o
Q
olol &5
CRS_ICR gz =k
0x0C 0| w
i g b
n
Reset value 0|j0)0]|0

148/1017

Refer to Section 2.2 on page 46 for the register boundary addresses.

RMO0091 Rev 10

3

RMO0091 General-purpose 1/0s (GPIO)
8 General-purpose 1/0s (GPIO)
8.1 Introduction
Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers
(GPIOx_IDR and GPIOx_ODR) and a 32-bit set/reset register (GPIOx_BSRR). Ports A and
B also have a 32-bit locking register (GPIOx_LCKR) and two 32-bit alternate function
selection registers (GPIOx_AFRH and GPIOx_AFRL).
On STM32F07x and STM32FQ09x devices, also ports C, D, E, and F have two 32-bit
alternate function selection registers (GPIOx_AFRH and GPIOx_AFRL).
Port E is available on STM32F07x and STM32F09x devices only.
8.2 GPIO main features
e Output states: push-pull or open drain + pull-up/down
e Output data from output data register (GPIOx_ODR) or peripheral (alternate function
output)
e Speed selection for each I/O
e Input states: floating, pull-up/down, analog
e Input data to input data register (GPIOx_IDR) or peripheral (alternate function input)
e Bit set and reset register (GPIOx_ BSRR) for bitwise write access to GPIOx_ODR
e Locking mechanism (GPIOx_LCKR) provided to freeze the port A or B I/O port
configuration.
e Analog function
e Alternate function selection registers (at most 16 AFs possible per I/O)
e Fast toggle capable of changing every two clock cycles
e Highly flexible pin multiplexing allows the use of I/O pins as GPIOs or as one of several
peripheral functions
8.3 GPIO functional description

3

Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each
port bit of the general-purpose 1/0 (GPIO) ports can be individually configured by software in
several modes:

e Input floating

e Input pull-up

e Input-pull-down

e Analog

e Output open-drain with pull-up or pull-down capability

e Output push-pull with pull-up or pull-down capability

e Alternate function push-pull with pull-up or pull-down capability
e Alternate function open-drain with pull-up or pull-down capability

RMO0091 Rev 10 149/1017

General-purpose 1/0s (GPIO) RMO0091

150/1017

Each 1/0O port

bit is freely programmable, however the 1/O port registers have to be

accessed as 32-bit words, half-words or bytes. The purpose of the GPIOx_BSRR register is
to allow atomic read/modify accesses to any of the GPIOx_ODR registers. In this way, there
is no risk of an IRQ occurring between the read and the modify access.

Figure 16 shows the basic structures of a standard 1/O port bit. Table 24 gives the possible

port bit config

urations.

Figure 16. Basic structure of an 1/O port bit

To/from on-chip
peripherals,
power control
and EXTI

Read

Write
—

_ Analog input/output

_ Digital input [T T T T T,
3 on/off |
(2]

2 |
@ <L I
@ N }
3 o | Vbbiox
5 Schmitt trigger |
a I
£ I
I

*************************** 1/0 pin

| Bit set/reset registers |

Output

Output data register

Read/write control i nwos
' _ ‘ Ve, Push-pul,
porpharal T emee Hnelen QB o dsabled |
MS55991V1
Table 24. Port bit configuration table(!)
MODER() | orypery) | OSPEEDR() | PUPDR() /0 configuration

0 0 0 GP output PP
0 0 1 GP output PP + PU
0 1 0 GP output PP + PD
0 SPEED 1 1 Reserved

o 1 [1:0] 0 0 |GPoutput oD
1 0 1 GP output OD + PU
1 1 0 GP output OD +PD
1 1 1 Reserved (GP output OD)
0 0 0 AF PP
0 0 1 AF PP + PU
0 1 0 AF PP + PD
0 SPEED 1 1 Reserved

10 1 (1:0] 0 0 |AF oD
1 0 1 AF OD + PU
1 1 0 AF OD + PD
1 1 1 Reserved

3

RMO0091 Rev 10

RM0091

General-purpose 1/0s (GPIO)

8.3.1

8.3.2

3

Table 24. Port bit configuration table(!) (continued)

OSPEEDR(i) | PUPDR(i)
[1:0] [1:0]

MODER(i)

[1:0] OTYPER(i)

1/0 configuration

X X X 0 0 Input Floating
X X X 0 1 Input PU
X X X 1 0 Input PD

00

X X X 1 1 Reserved (input floating)

0 Input/output Analog

11
X X X 1 0 Reserved

X X X 1 1

1. GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate
function.

General-purpose 1/O (GPIO)

During and just after reset, the alternate functions are not active and most of the 1/0O ports
are configured in input floating mode.

The debug pins are in AF pull-up/pull-down after reset:

e PA14: SWCLK in pull-down

e PA13: SWDIO in pull-up

When the pin is configured as output, the value written to the output data register

(GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull
mode or open-drain mode (only the low level is driven, high level is HI-Z).

The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB
clock cycle.

All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or
not depending on the value in the GPIOx_PUPDR register.

1/0 pin alternate function multiplexer and mapping

The device I/O pins are connected to on-board peripherals/modules through a multiplexer
that allows only one peripheral alternate function (AF) connected to an I/O pin at a time. In
this way, there can be no conflict between peripherals available on the same 1/O pin.

Each I/0 pin has a multiplexer with up to eight alternate function inputs (AFO to AF7) that

can be configured through the GPIOx_AFRL (for pin 0 to 7) and GPIOx_AFRH (for pin 8 to

15) registers:

e After reset the multiplexer selection is alternate function 0 (AFQ). The I/Os are
configured in alternate function mode through GPIOx_MODER register.

e The specific alternate function assignments for each pin are detailed in the device
datasheet.

In addition to this flexible I/O multiplexing architecture, each peripheral has alternate
functions mapped onto different I/O pins to optimize the number of peripherals available in
smaller packages.

RMO0091 Rev 10 151/1017

General-purpose 1/0s (GPIO) RMO0091

8.3.3

8.34

8.3.5

152/1017

To use an I/O in a given configuration, the user has to proceed as follows:
e Debug function: after each device reset these pins are assigned as alternate function
pins immediately usable by the debugger host
e GPIO: configure the desired I/O as output, input or analog in the GPIOx_MODER
register.
e Peripheral alternate function:
— Connect the I/O to the desired AFx in one of the GPIOx_AFRL or GPIOx_AFRH
register.
— Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER,
GPIOx_PUPDR and GPIOx_OSPEEDER registers, respectively.
— Configure the desired I/O as an alternate function in the GPIOx_MODER register.
e Additional functions:

— ADC and DAC connection can be enabled in ADC or DAC registers regardless the
configured GPIO mode. When ADC or DAC uses a GPIQ, it is recommended to
configure the GPIO in analog mode, through the GPIOx_MODER register.

— For the additional functions like RTC, WKUPx and oscillators, configure the
required function in the related RTC, PWR and RCC registers. These functions
have priority over the configuration in the standard GPIO registers.

Refer to the “Alternate function mapping” table in the device datasheet for the detailed
mapping of the alternate function 1/O pins.

1/0 port control registers

Each of the GPIO ports has four 32-bit memory-mapped control registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 1/0s. The
GPIOx_MODER register is used to select the I/0O mode (input, output, AF, analog). The
GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type (push-
pull or open-drain) and speed. The GPIOx_PUPDR register is used to select the pull-
up/pull-down whatever the 1/O direction.

I/0 port data registers

Each GPIO has two 16-bit memory-mapped data registers: input and output data registers
(GPIOx_IDR and GPIOx_ODR). GPIOx_ODR stores the data to be output, it is read/write
accessible. The data input through the 1/O are stored into the input data register
(GPIOx_IDR), a read-only register.

See Section 8.4.5: GPIO port input data register (GPIOx_IDR) (x =A to F) and
Section 8.4.6: GPIO port output data register (GPIOx_ODR) (x = A to F) for the register
descriptions.

I/O data bitwise handling

The bit set reset register (GPIOx_BSRR) is a 32-bit register which allows the application to
set and reset each individual bit in the output data register (GPIOx_ODR). The bit set reset
register has twice the size of GPIOx_ODR.

To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BS(i) and BR(i).
When written to 1, bit BS(i) sets the corresponding ODR(i) bit. When written to 1, bit BR(i)
resets the ODR(i) corresponding bit.

RMO0091 Rev 10 ‘Yl

RM0091

General-purpose 1/0s (GPIO)

8.3.6

8.3.7

8.3.8

3

Writing any bit to 0 in GPIOx_BSRR does not have any effect on the corresponding bit in
GPIOx_ODR. If there is an attempt to both set and reset a bit in GPIOx_BSRR, the set
action takes priority.

Using the GPIOx_BSRR register to change the values of individual bits in GPIOx_ODR is a
“one-shot” effect that does not lock the GPIOx_ODR bits. The GPIOx_ODR bits can always
be accessed directly. The GPIOx_BSRR register provides a way of performing atomic
bitwise handling.

There is no need for the software to disable interrupts when programming the GPIOx_ODR
at bit level: it is possible to modify one or more bits in a single atomic AHB write access.

GPIO locking mechanism

It is possible to freeze the port A and B GPIO control registers by applying a specific write
sequence to the GPIOx_LCKR register. The frozen registers are GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.

To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When
the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used
to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must
be the same). When the LOCK sequence has been applied to a port bit, the value of the port
bit can no longer be modified until the next MCU reset or peripheral reset. Each
GPIOx_LCKR bit freezes the corresponding bit in the control registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.

The LOCK sequence (refer to Section 8.4.8: GPIO port configuration lock register
(GPIOx_LCKR) (x =Ato B)) can only be performed using a word (32-bit long) access to the
GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set at the same
time as the [15:0] bits.

For more details refer to LCKR register description in Section 8.4.8: GPIO port configuration
lock register (GPIOx_LCKR) (x =Ato B).

1/0 alternate function input/output

Two registers are provided to select one of the alternate function inputs/outputs available for
each I/0O. With these registers, the user can connect an alternate function to some other pin
as required by the application.

This means that a number of possible peripheral functions are multiplexed on each GPIO
using the GPIOx_AFRL and GPIOx_AFRH alternate function registers. The application can
thus select any one of the possible functions for each 1/0. The AF selection signal being
common to the alternate function input and alternate function output, a single channel is
selected for the alternate function input/output of a given 1/O.

For code example refer to Section A.4.2: Alternate function selection sequence code
example on page 945.

To know which functions are multiplexed on each GPIO pin refer to the device datasheet.

External interrupt/wake-up lines

All ports have external interrupt capability. To use external interrupt lines, the given pin must
not be configured in analog mode or being used as oscillator pin, so the input trigger is kept
enabled.

RMO0091 Rev 10 153/1017

General-purpose 1/0s (GPIO) RMO0091

8.3.9

8.3.10

154/1017

Refer to Section 11.2: Extended interrupts and events controller (EXTI) and to
Section 11.2.3: Event management.

Input configuration

When the 1/O port is programmed as input:
e The output buffer is disabled
e The Schmitt trigger input is activated

e The pull-up and pull-down resistors are activated depending on the value in the
GPIOx_PUPDR register

e The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

e Aread access to the input data register provides the 1/O state

Figure 17 shows the input configuration of the I/O port bit.

Figure 17. Input floating / pull up / pull down configurations

To / from on-chip Analog input/output

peripherals, power «————
control and EXTI Digital input e
E)
@
Read 2
- <t
- i)
— ©
E ©
2 H
% =
; 1
Write = =
—»| 2
@ @
5 g 1/0 pin
3 g
(2]
= ©
m °
— 5
. =3
Read/write =1
(e}

Output configuration

When the 1/O port is programmed as output:
e The output buffer is enabled:

— Open drain mode: a “0” in the output register activates the N-MOS whereas a “1”
in the output register leaves the port in Hi-Z (the P-MOS is never activated)

— Push-pull mode: a “0” in the output register activates the N-MOS whereas a “1” in
the output register activates the P-MOS

e The Schmitt trigger input is activated

e The pull-up and pull-down resistors are activated depending on the value in the
GPIOx_PUPDR register

e The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

e Aread access to the input data register gets the I/O state
e Aread access to the output data register gets the last written value

3

RMO0091 Rev 10

RMO0091 General-purpose 1/0s (GPIO)
Figure 18 shows the output configuration of the 1/O port bit.
Figure 18. Output configuration
Toffrom on-chip Analog input/output
peripheral, <~
power control, _ Digital input it e e 1
and EXTI = | on !
2 } ‘
- =) |
Read o |
- e A |
151 3 ‘ I Vbbiox
] 5 } Schmitt trigger }
j=2l Q
. [9) c | |
Write = 5| = [: I
—»| T L | Input driver |
® =Y
s O TR et ar T T T T T T T T T T T T T T T 1 1/0 pin
8 s } Output driver }
= © |
o ° |
§_ I Output !
Read/write E] ‘ control [
g | (. ‘
[
| -
From on-chip Alternate function output ! Vss operﬁléfgir?ug} }
peripheral } disabled |
MS55992V1
8.3.11 Alternate function configuration

3

When the 1/O port is programmed as alternate function:
e The output buffer can be configured in open-drain or push-pull mode

e The output buffer is driven by the signals coming from the peripheral (transmitter
enable and data)

e The Schmitt trigger input is activated

e The weak pull-up and pull-down resistors are activated or not depending on the value
in the GPIOx_PUPDR register

e The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

e Aread access to the input data register gets the I/O state

RMO0091 Rev 10 155/1017

General-purpose 1/0s (GPIO) RMO0091

8.3.12

156/1017

Figure 19 shows the alternate function configuration of the 1/0 port bit.

Figure 19. Alternate function configuration

Tolfrom on-chip Analog input/output

peripheral

peripheral, *
power control, _ Digital input P T T T TS T e
and EXTI = |
[
B [
- k=) I
Read o
— @ | <
o © |
2 © | o
k] 5 | Schmitt trigger
D Q.
. o c [
Write = 5| = I)
—| T 2 | Input driver
® %| = - ---------------"-"----—-°--
S o 0 TTZTnTTT T T T T T T T T T T T T T T 1/0 pin
= @ |
8 s | Output driver
= © |
o ©
2 I Output
Read/write g | control
[
[
- [
From on-chip Alternate function output 1 Vss operﬁﬂf‘;‘i,ﬁ”g; I
[

disabled }

MS55992V1

Analog configuration

When the I/O port is programmed as analog configuration:
e The output buffer is disabled

e The Schmitt trigger input is deactivated, providing zero consumption for every analog
value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0).

e The weak pull-up and pull-down resistors are disabled by hardware
e Read access to the input data register gets the value “0”

For code example refer to Section A.4.3: Analog GPIO configuration code example on
page 946.

Figure 20 shows the high-impedance, analog-input configuration of the 1/0 port bits.

Figure 20. High impedance-analog configuration

Toffrom on-chip Anaog input/output
peripheral -
| oo]
Read B } off ‘
L \
< | 0 |
— g)@ I
® © ! | |
[5) 5 ‘ |
_‘g 2 } Schmitt trigger }
. o |
Write 3 g I Input driver }
o D oo ooo .

> 2 I Output driver L] vopin
7] i) | |
= © | |
o o | |
o g ! oo :
Read/write 5 } |
o | |
!

MS55993V1
RM0091 Rev 10 1S7]

RM0091

General-purpose 1/0s (GPIO)

8.3.13

8.3.14

3

Using the HSE or LSE oscillator pins as GPIOs

When the HSE or LSE oscillator is switched OFF (default state after reset), the related
oscillator pins can be used as normal GPIOs.

When the HSE or LSE oscillator is switched ON (by setting the HSEON or LSEON bit in the
RCC_CSR register) the oscillator takes control of its associated pins and the GPIO
configuration of these pins has no effect.

When the oscillator is configured in a user external clock mode, only the pin is reserved for
clock input and the OSC_OUT or OSC32_OUT pin can still be used as normal GPIO.
Using the GPIO pins in the RTC supply domain

The PC13/PC14/PC15 GPIO functionality is lost when the core supply domain is powered
off (when the device enters Standby mode). In this case, if their GPIO configuration is not
bypassed by the RTC configuration, these pins are set in an analog input mode.

For details about I/O control by the RTC, refer to Section 25.4: RTC functional description.

RMO0091 Rev 10 157/1017

General-purpose 1/0s (GPIO)

RM0091

8.4 GPIO registers
For a summary of register bits, register address offsets and reset values, refer to Table 25.
The peripheral registers can be written in word, half word or byte mode.
8.4.1 GPIO port mode register (GPIOx_MODER)
(x=AtoF)
Address offset:0x00
Reset value: 0x2800 0000 for port A
Reset value: 0x0000 0000 for other ports
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MODER15[1:0] | MODER14[1:0] | MODER13[1:0] | MODER12[1:0] | MODER11[1:0] | MODER10[1:0] | MODER9[1:0] | MODERS[1:0]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MODER7[1:0] | MODERS[1:0] | MODERS5[1:0] | MODER4[1:0] | MODER3[1:0] | MODER2[1:0] | MODER1[1:0] | MODERO[1:0]
Bits 31:0 MODER[15:0][1:0]: Port x configuration 1/O pin y (y = 15 to 0)
These bits are written by software to configure the I/O mode.
00: Input mode (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode
8.4.2 GPIO port output type register (GPIOx_OTYPER)
(x=AtoF)
Address offset: 0x04
Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OT15 | OT14 | OT13 | OT12 | OT11 | OT10 | OT9 | OT8 | OT7 | OT6 | OT5 | OT4 | OT3 | OT2 | OT1 | OTO
w rw w w w w w 'w rw w w w w w w w

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 OT[15:0]: Port x configuration I/O piny (y = 15 to 0)

158/1017

These bits are written by software to configure the I/O output type.

0: Output push-pull (reset state)
1: Output open-drain

RMO0091 Rev 10

3

RMO0091 General-purpose 1/0s (GPIO)
8.4.3 GPIO port output speed register (GPIOx_OSPEEDR)

(x=AtoF)

Address offset: 0x08

Reset value: 0x0C00 0000 (for port A)

Reset value: 0x0000 0000 (for other ports)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
OSPEEDR15 | OSPEEDR14 | OSPEEDR13 | OSPEEDR12 | OSPEEDR11 OSPEEDR10 | OSPEEDR9 | OSPEEDRS
[1:0] [1:0] [1:0] [1:0] [1:0] [1:0] [1:0] [1:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OSPEEDR? OSPEEDR6 OSPEEDRS5 OSPEEDR4 OSPEEDR3 OSPEEDR2 OSPEEDR1 OSPEEDRO
[1:0] [1:0] [1:0] [1:0] [1:0] [1:0] [1:0] [1:0]

Bits 31:0 OSPEEDR][15:0][1:0]: Port x configuration I/O pin'y (y = 15 to 0)
These bits are written by software to configure the 1/O output speed.
x0: Low speed
01: Medium speed
11: High speed
Note: Refer to the device datasheet for the frequency specifications and the power supply
and load conditions for each speed..
8.44 GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(x=AtoF)
Address offset: 0x0C
Reset value: 0x2400 0000 (for port A)
Reset value: 0x0000 0000 (for other ports)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PUPDR15[1:0] | PUPDR14[1:0] | PUPDR13[1:0] | PUPDR12[1:0] | PUPDR11[1:0] | PUPDR10[1:0] | PUPDR9[1:0] | PUPDRS8[1:0]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PUPDR7[1:0] | PUPDRS6[1:0] | PUPDR5[1:0] | PUPDR4[1:0] | PUPDR3[1:0] | PUPDR2[1:0] | PUPDR1[1:0] | PUPDRO[1:0]

Bits 31:0 PUPDR[15:0][1:0]: Port x configuration I/O piny (y = 15 to 0)
These bits are written by software to configure the 1/0O pull-up or pull-down
00: No pull-up, pull-down
01: Pull-up
10: Pull-down
11: Reserved
Kys RM0091 Rev 10 159/1017

General-purpose 1/0s (GPIO) RMO0091

8.45 GPIO port input data register (GPIOx_IDR)
(x=AtoF)

Address offset: 0x10
Reset value: 0x0000 XXXX

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
IDR15 | IDR14 | IDR13 | IDR12 | IDR11 | IDR10 | IDR9 IDR8 IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDRO

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 IDR[15:0]: Port x input data I/O piny (y = 15 to 0)
These bits are read-only. They contain the input value of the corresponding 1/O port.

8.4.6 GPIO port output data register (GPIOx_ODR)
(x=AtoF)

Address offset: 0x14
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ODR15 | ODR14 | ODR13 | ODR12 | ODR11 | ODR10 | ODR9 | ODR8 | ODR7 | ODR6 | ODR5 | ODR4 | ODR3 | ODR2 | ODR1 | ODRO

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 ODR[15:0]: Port output data 1/O piny (y = 15 to 0)
These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and/or reset by writing to
the GPIOx_BSRR register (x = A..F).

3

160/1017 RMO0091 Rev 10

RMO0091 General-purpose 1/0s (GPIO)

8.4.7 GPIO port bit set/reset register (GPIOx_BSRR)
(x=AtoF)
Address offset: 0x18
Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
BR15 | BR14 | BR13 | BR12 | BR11 | BR10 | BR9 | BR8 | BR7 | BR6 | BR5 | BR4 | BR3 | BR2 | BR1 | BRO
w w w w w w w w w w w w w w w w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BS15 | BS14 | BS13 | BS12 | BS11 | BS10 | BS9 | BS8 | BS7 | BS6 | BS5 | BS4 | BS3 | BS2 | BS1 | BSO
w w w w w w w w w w w w w w w w
Bits 31:16 BR[15:0]: Port x reset /0 piny (y = 15 to 0)
These bits are write-only. A read to these bits returns the value 0x0000.
0: No action on the corresponding ODRX bit
1: Resets the corresponding ODRXx bit
Note: If both BSx and BRx are set, BSx has priority.
Bits 15:0 BS[15:0]: Port x set I/0 piny (y = 15 to 0)
These bits are write-only. A read to these bits returns the value 0x0000.
0: No action on the corresponding ODRX bit
1: Sets the corresponding ODRXx bit
8.4.8 GPIO port configuration lock register (GPIOx_LCKR)
(x =Ato B)
This register is used to lock the configuration of the port bits when a correct write sequence
is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the
GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the
LOCK sequence has been applied on a port bit, the value of this port bit can no longer be
modified until the next MCU reset or peripheral reset.
Note: A specific write sequence is used to write to the GPIOx_LCKR register. Only word access
(32-bit long) is allowed during this locking sequence.
Each lock bit freezes a specific configuration register (control and alternate function
registers).
Address offset: 0x1C
Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
LCKK
w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LCK15 | LCK14 | LCK13 | LCK12 | LCK11 | LCK10 | LCK9 | LCK8 | LCK7 | LCK6 | LCK5 | LCK4 | LCK3 | LCK2 | LCK1 | LCKO
rw w w w rw w w rw w w w w w w rw rw
Kyy RM0091 Rev 10 161/1017

General-purpose 1/0s (GPIO)

RM0091

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 LCKK: Lock key

This bit can be read any time. It can only be modified using the lock key write sequence.

0: Port configuration lock key not active
1: Port configuration lock key active. The GPIOx_LCKR register is locked until the next MCU

reset or peripheral reset.
LOCK key write sequence:
WR LCKR[16] = 1 + LCKR
WR LCKR[16] = 0 + LCKR
WR LCKR[16] = 1 + LCKR
RD LCKR

[15:0]
[15:0]
[15:0]

RD LCKR[16] = 1 (this read operation is optional but it confirms that the lock is active)

Note: During the LOCK key write sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence aborts the lock.
After the first lock sequence on any bit of the port, any read access on the LCKK bit

returns 1 until the next MCU reset or peripheral reset.For code example refer to
Section A.4.1: Lock sequence code example on page 945.

Bits 15:0 LCK[15:0]: Port x lock I/O piny (y = 15 to 0)

These bits are read/write but can only be written when the LCKK bit is 0.

0: Port configuration not locked
1: Port configuration locked

8.4.9 GPIO alternate function low register (GPIOx_AFRL)
(x=AtoF)
Address offset: 0x20
Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
AFSEL7[3:0] AFSEL6[3:0] AFSELS5[3:0] AFSEL4[3:0]
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
AFSEL3[3:0] AFSEL2[3:0] AFSEL1[3:0] AFSELO[3:0]

162/1017

Bits 31:0 AFSELy[3:0]: Alternate function selection for port x piny (y = 0..7)

These bits are written by software to configure alternate function 1/0s

AFSELy selection:
0000: AFO
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7

1000: Reserved
1001: Reserved
1010: Reserved
1011: Reserved
1100: Reserved
1101: Reserved
1110: Reserved
1111: Reserved

RMO0091 Rev 10

3

RMO0091 General-purpose 1/0s (GPIO)

8.4.10 GPIO alternate function high register (GPIOx_AFRH)
(x=AtoF)

Address offset: 0x24
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
AFSEL15[3:0] AFSEL14[3:0] AFSEL13[3:0] AFSEL12[3:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AFSEL11[3:0] AFSEL10[3:0] AFSEL9[3:0] AFSEL8[3:0]

Bits 31:0 AFSELy[3:0]: Alternate function selection for port x piny (y = 8..15)
These bits are written by software to configure alternate function 1/0s

AFSELy selection:
0000: AFO 1000: Reserved
0001: AF1 1001: Reserved
0010: AF2 1010: Reserved
0011: AF3 1011: Reserved
0100: AF4 1100: Reserved
0101: AF5 1101: Reserved
0110: AF6 1110: Reserved
0111: AF7 1111: Reserved

8.4.11 GPIO port bit reset register (GPIOx_BRR) (x = A to F)

Address offset: 0x28
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
BR15 | BR14 | BR13 | BR12 | BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BRO
w w w w w w w w w w w w w w w w

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 BR[15:0]: Port x reset IO piny (y = 15 to 0)
These bits are write-only. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODx bit
1: Reset the corresponding ODx bit

3

RMO0091 Rev 10 163/1017

RM0091

General-purpose 1/0s (GPIO)

GPIO register map

8.4.12

The following table gives the GPIO register map and reset values.

Table 25. GPIO register map and reset values

0 o ©| o0 |° o o o © |oyal| > | 0¥ao |@ | 0sg |
[o:1lod3aow — [o:1lodaaon [0:1]lo4@33dso — [0:1lodaaadso — [o:1lodadnd — [o:1lodadnd
I o ©| 110 |° o o o © [1¥al| x| 1¥ao |e | isd |©
4 o °| zio |° o ° o © |zyal| * |gyao @ | zsg @
[o:tlvy3aow — [0z lryaaon [0:1114@33dso — [o:Llkdaaadso — [o:lidadnd — [o:Llidadnd
€ o ©| ¢lo |° o o o © |eyal| > |ey¥ao |e | gsq |@
14 o °| vl0 |° o ° o © | yyal| x | ¥¥ado [@ | ¥sa @
[0:1]lzd3aow — [o:1lzyaaon [0:1]lzda@33dso — [0:1ledaaadso — [o:1lzdadnd — [o:Llzdadnd
S o ©| 510 |° o o o © |gyal| > | sy¥ao |° | ssg |°
9 [o:1]led3aon = [o:1led3aon 2 oo @ [0:1leda@3aadso = [0:1]leda3adso = [o:1]ledadnd = [o:1]ledadnd > |oddI1* | OMd0 IO | 998 19
L] o|™ o| 40 |o|™ o|™ o|™ o|™ © |syai| = | 18a0 |2 | is8 |©
8 o ©| glo |° o o o © |gyal| > | gy¥ao |° | gsg |°
[o:1lyd3aow — [o:Llvd3aaon [0:1lv4a@33dso — [0:Llvdaaadso — [o:Llydadnd — [o:Llvdadnd
6 o ©| 610 |° o o o © |6yal| x | 6400 |© | 689 |°
0l ° ©| oo |° ° ° ° © |oryal| * |or¥ao|e |oisg|®
[0:1]sd3aow — [o:Llsd3aon [0:1]64a@33ds0 [[0:1ls4a3aadso — [o:1lsdadnd — [o:1lsdadnd
L o © | 1o |° o o o © [Ldal] < [1¥aole |Lsda|e
¢l [o:1lod3aon > [o:1lod3aon ° 1 cio 2 [0:1l9d@33dso > [0:1]l9da33adso > [o:1]lodadnd] [o:1]l9dadnd ° jel¥ai * 1218d0|° |z1Se2
€l] o|™ oleguo|o | o|™ o|™ o|™ © |evyall < |eryaole |eisa|e
145) ol °| p10 |° |, . ol . ol . ol . © |pi¥al X |pi¥ao|e |visg|e
[0:1]243a0W — [0:1]z43a0NW [0:1124@33ds0 [[0:1124a33ds0 — [0:1124adnd — [0:1]24adnd
Sl ° ©|gllo |° ° o ° © |s1yal x |s1¥ao|e |sisg|e
91 o o o o o o oyg |o
T [o:1]l8y3aow — [o:1le¥3aaon [0:1184a@33dSO 1 [0:118¥a@a3adso — [o:1l8dadnd — [o:1l8dadnd
(15 o o o o o o Zyg |o
61 [o:1led3aow — [o:1le¥3aaon [0:1l64@33dSO [[0:1l6¥a@3a3dSO — [0:Ll6¥adnd — [o:Ll6dadnd
(1YA o o o o o o pyg |©
1z [o:t]lovd3aow—lo:tlord3aon [o:1]lorda3adsor—lo:Llorda3adsor—lo:Llordadndr—ilo:Llordadnd
rAA) ol o) ol ol o o oug |©
ez (GAINRSE{e[e])] s | (HA[ARSElaloT] oy [0:1 111 ¥a33ds0[[0 eaaadso o lgadndrloslk ¥adnd S g o
| A <} o <} o o o gyg |©
S [0:1]zra3aon—lo: Lz d3aon [0:1]z1da3adso—lo: LIz ya3adsor—ilo: Llziyadnd—lo: L1z dadnd
r4 o o o o o o 6yg |©
9¢) o o - o -~ o orygle
[o:1lerdaaow—ilo:Llerd3aaon [0:1lerdaaadso—ilo:Llerdaaadsor—ilo:Llerdadnd—ilo:Llerdadnd
12 - o - o o o pLegle
(214 o o o o o o Zlygle
[o:1lyrd3aonw—ilo:Llvia3aaon [0:Llvrda3adsor—lo:vida3adsor—lo:Lividadnd—ilo:Llvidadnd
6¢ - o o o - o crygle
0¢ o o o o o o yrygle
Le [o:1lsva3aonw—lo:Lls1a3aon [o:1ls1da3adsor—lo:Lisida3adsor—lo:Llsidadnd—ilo:Llsrdadnd
o © x
] ¥~ [N o oo I x— —~ —~ —~
E uj o EE || Wk |, m ® oL ° s o B8E% lole%le|x% |o|8% e
c 3 Qm 3| =< |3 w 3 [T E o 3 o m S|lg< |2 |2« |2 (< |2
o [(<} S| = o o [Y a [2 o 2 S|=n |S|Ou |S|an S
o = i = Zlox |2 % ie %x ie e, z o 2lxx |2 ' x |2 Ix |2
- < g x' o ol Ko |8 | g 1o 2 < 2l xo (2|2 (8|02 [B|52 |8
2 le) 5] [o R} ol 6d |o < 5] X & 1 o i1 (o] ol |o|Eo |@|=0 |
o T 4 M.m 4 < 4 o 4 m.m hd w 4 @m 4 G.m 4 6€ 4 W.mR
() [0} o= [CR=2 o = < = = =
14 o o
.m o o < <o} o) Q QO o <t e
= = = = = = R = % % %
O o o o o o o o o o o

RMO0091 Rev 10

164/1017

General-purpose 1/0s (GPIO)

RMO0091
Table 25. GPIO register map and reset values (continued)
Offset| Register name | 5|28 K|S Q| 3|QIX((R|2| 2= (22|22 N (2|0 |0 |~ o|v|+|o|~| |0
W [[[N [~ |[O -
GPIOx_LCKR SicicicicRicIZIRIEICIRREICIEIR|S
oxiC | (wherex=A.B) SERRIBIGIBIGIRIERIGIRIEIRIE]
Reset value olo|lo{oflo|o|o|o|o|o|ofo|o|ofo|0]0O
GPIOX_AFRL AFSEL7 AFSEL6 AFSEL5 AFSEL4 AFSEL3 AFSEL2 AFSEL1 AFSELO
0x20 (where x = A..F) [3:0] [3:0] [3:0] [3:0] [3:0] [3:0] [3:0] [3:0]
Reset value o|o|0|o o|o|0|0 0|0|o|o o|o|0|0 0|o|o|0 o|0|o|o o|0|o|o o|o|o|0
GPIOX_AFRH AFSEL15 | AFSEL14 | AFSEL13 | AFSEL12 | AFSEL11 | AFSEL10 AFSEL9 AFSEL8
0x24 (where x = A..F) [3:0] [3:0] [3:0] [3:0] [3:0] [3:0] [3:0] [3:0]
Reset value ofofoJo|ofofofo|o]ofoJo|oJo[o[o|oJo[oJo|oJoJoJo[o[oJo[o|[ofo[0]0O
bt SEEEEERREIRERRERR
0x28 (where x = A..F) e e e & S |0 |0 |6 |0 @ |6 | |o (o
Reset value ojolo|ofofofofofo|o|ofo|o|OfO]|O
Refer to Section 2.2 on page 46 for the register boundary addresses.
165/1017

3

RMO0091 Rev 10

System configuration controller (SYSCFG)

RMO0091

9

System configuration controller (SYSCFG)

The devices feature a set of configuration registers. The main purposes of the system
configuration controller are the following:

e Enabling/disabling I°C Fast Mode Plus on some |0 ports

e Remapping some DMA trigger sources to different DMA channels

e Remapping the memory located at the beginning of the code area

e Pending interrupt status registers for each interrupt line on STM32F09x devices
e Managing the external interrupt line connection to the GPIOs

e Managing robustness feature

9.1 SYSCFG registers
9.1.1 SYSCFG configuration register 1 (SYSCFG_CFGR1)
This register is used for specific configurations of memory and DMA requests remap and to
control special I/O features.
Two bits are used to configure the type of memory accessible at address 0x0000 0000.
These bits are used to select the physical remap by software and so, bypass the hardware
BOOT selection.
After reset these bits take the value selected by the actual boot mode configuration.
Address offset: 0x00
Reset value: 0x0000 000X (X is the memory mode selected by the actual boot mode
configuration
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TIM3_ | TIM2_ | TIM1_ | [2C1_ |USART3|USART2 | SPI2_ | 12C_ | 12C_ | ,on | pgq | 126 | 12C_ | 12C_ | 12C_
DMA_ | DMA_ | DMA_ | DMA_ | DMA_ | DMA_ | DMA_ | PA10_ | PA9_ | TS | Tro | PB9_ | PB8_ | PB7_ | PB6_
RMP | RMP | RMP | RMP | RMP | RMP | RMP | FMP | FMP FMP | FMP | FMP | FMP
w rw w w w rw w w rw w rw w w w w
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
TIM17 | TIM16 USART1 | USART1
2MA 28 o~ owa~| G- | Gr | Dus | e Pa MENL tiooe
=S |50 | RMPT| RMP | SEE | ous | RMP : RMP :
w w w w w w w rw w w w
Bit 31 Reserved, must be kept at reset value.
Bit 30 TIM3_DMA_RMP: TIM3 DMA request remapping bit. Available on STM32F07x devices only.
This bit is set and cleared by software. It controls the remapping of TIM3 DMA requests.
0: No remap (TIM3_CH1 and TIM3_TRIG DMA requests mapped on DMA channel 4)
1: Remap (TIM3_CH1 and TIM3_TRIG DMA requests mapped on DMA channel 6)
166/1017 RM0091 Rev 10 1S7]

RM0091

System configuration controller (SYSCFG)

Bit 29

Bit 28

Bit 27

Bit 26

Bit 25

Bit 24

Bits 23:22

3

TIM2_DMA_RMP: TIM2 DMA request remapping bit. Available on STM32F07x devices only.
This bit is set and cleared by software. It controls the remapping of TIM2 DMA requests.
0: No remap (TIM2_CH2 and TIM2_CH4 DMA requests mapped on DMA channel 3 and 4
respectively)
1: Remap (TIM2_CH2 and TIM2_CH4 DMA requests mapped on DMA channel 7)

TIM1_DMA_RMP: TIM1 DMA request remapping bit. Available on STM32F07x devices only.
This bit is set and cleared by software. It controls the remapping of TIM1 DMA requests.
0: No remap (TIM1_CH1, TIM1_CH2 and TIM1_CH3 DMA requests mapped on DMA
channel 2, 3 and 4 respectively)
1: Remap (TIM1_CH1, TIM1_CH2 and TIM1_CH3 DMA requests mapped on DMA channel
6)
12C1_DMA_RMP: 12C1 DMA request remapping bit. Available on STM32F07x devices only.
This bit is set and cleared by software. It controls the remapping of I2C1 DMA requests.
0: No remap (12C1_RX and 12C1_TX DMA requests mapped on DMA channel 3 and 2
respectively)

1: Remap (12C1_RX and 12C1_TX DMA requests mapped on DMA channel 7 and 6
respectively)

USART3_DMA_RMP: USART3 DMA request remapping bit. Available on STM32F07x

devices only.

This bit is set and cleared by software. It controls the remapping of USART3 DMA requests.
0: (USART3_RX and USART3_TX DMA requests mapped on DMA channel 6 and 7
respectively)

1: Remap (USART3_RX and USART3_TX DMA requests mapped on DMA channel 3 and 2
respectively)

USART2_DMA_RMP: USART2 DMA request remapping bit. Available on STM32F07x

devices only.

This bit is set and cleared by software. It controls the remapping of USART2 DMA requests.
0: No remap (USART2_RX and USART2_TX DMA requests mapped on DMA channel 5 and
4 respectively)
1: Remap (USART2_RX and USART2_TX DMA requests mapped on DMA channel 6 and 7
respectively)

SPI2_DMA_RMP: SPI2 DMA request remapping bit. Available on STM32F07x devices only.
This bit is set and cleared by software. It controls the remapping of SPI2 DMA requests.

0: No remap (SPI2_RX and SPI2_TX DMA requests mapped on DMA channel 4 and 5
respectively)

1: Remap (SPI12_RX and SPI2_TX DMA requests mapped on DMA channel 6 and 7
respectively)

12C_PAx_FMP: Fast Mode Plus (FM+) driving capability activation bits. Available on
STM32F03x, STM32F04x and STM32F09x devices only.

These bits are set and cleared by software. Each bit enables 12C FM+ mode for PA10 and PA9
I/Os.

0: PAXx pin operates in standard mode.
1: I2C FM+ mode enabled on PAx pin and the Speed control is bypassed.

RMO0091 Rev 10 167/1017

System configuration controller (SYSCFG) RM0091

168/1017

Bit 21

Bit 20

Bits 19:16

Bit 15
Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

12C2_FMP: FM+ driving capability activation for 12C2. Available on STM32F07x and
STM32F09x devices only.
This bit is set and cleared by software. This bit is OR-ed with 12C_Pxx_FM+ bits.
0: FM+ mode is controlled by I12C_Pxx_FM+ bits only.
1: FM+ mode is enabled on all I2C2 pins selected through selection bits in GPIOx_AFR
registers. This is the only way to enable the FM+ mode for pads without a dedicated
12C_Pxx_FM+ control bit.

12C1_FMP: FM+ driving capability activation for I2C1. Not available on STM32F05x devices.
This bit is set and cleared by software. This bit is OR-ed with 12C_Pxx_FM+ bits.

0: FM+ mode is controlled by I12C_Pxx_FM+ bits only.

1: FM+ mode is enabled on all I2C1 pins selected through selection bits in GPIOx_AFR

registers. This is the only way to enable the FM+ mode for pads without a dedicated
12C_Pxx_FM+ control bit.

12C_PBx_FMP: Fast Mode Plus (FM+) driving capability activation bits.
These bits are set and cleared by software. Each bit enables 12C FM+ mode for PB6, PB7,
PB8, and PB9 1/Os.

0: PBx pin operates in standard mode.

1: I2C FM+ mode enabled on PBx pin and the Speed control is bypassed.

Reserved, must be kept at reset value.

TIM17_DMA_RMP2: TIM17 alternate DMA request remapping bit. Available on STM32F07x
devices only.
This bit is set and cleared by software. It controls the alternate remapping of TIM17 DMA
requests.
0: No alternate remap (TIM17 DMA requests mapped according to TIM17_DMA_RMP bit)
1: Alternate remap (TIM17_CH1 and TIM17_UP DMA requests mapped on DMA channel 7)

TIM16_DMA_RMP2: TIM16 alternate DMA request remapping bit. Available on STM32F07x
devices only.
This bit is set and cleared by software. It controls the alternate remapping of TIM16 DMA
requests.
0: No alternate remap (TIM16 DMA requests mapped according to TIM16_DMA_RMP bit)
1: Alternate remap (TIM16_CH1 and TIM16_UP DMA requests mapped on DMA channel 6)

TIM17_DMA_RMP: TIM17 DMA request remapping bit. Available on STM32F03x,

STM32F04x, STM32F05x and STM32F07x devices only.

This bit is set and cleared by software. It controls the remapping of TIM17 DMA requests.
0: No remap (TIM17_CH1 and TIM17_UP DMA requests mapped on DMA channel 1)
1: Remap (TIM17_CH1 and TIM17_UP DMA requests mapped on DMA channel 2)

TIM16_DMA_RMP: TIM16 DMA request remapping bit. Available on STM32F03x,

STM32F04x, STM32F05x and STM32F07x devices only.

This bit is set and cleared by software. It controls the remapping of TIM16 DMA requests.
0: No remap (TIM16_CH1 and TIM16_UP DMA requests mapped on DMA channel 3)
1: Remap (TIM16_CH1 and TIM16_UP DMA requests mapped on DMA channel 4)

USART1_RX_DMA_RMP: USART1_RX DMA request remapping bit. Available on
STM32F03x, STM32F04x, STM32F05x and STM32F07x devices only.
This bit is set and cleared by software. It controls the remapping of USART1_RX DMA
requests.

0: No remap (USART1_RX DMA request mapped on DMA channel 3)

1: Remap (USART1_RX DMA request mapped on DMA channel 5)

3

RMO0091 Rev 10

RMO0091 System configuration controller (SYSCFG)

Bit9 USART1_TX_DMA_RMP: USART1_TX DMA request remapping bit. Available on
STM32F03x, STM32F04x, STM32F05x and STM32F07x devices only.

This bit is set and cleared by software. It bit controls the remapping of USART1_TX DMA
requests.

0: No remap (USART1_TX DMA request mapped on DMA channel 2)
1: Remap (USART1_TX DMA request mapped on DMA channel 4)

Bit 8 ADC_DMA_RMP: ADC DMA request remapping bit. Available on STM32F03x, STM32F04x,
STM32F05x and STM32F07x devices only.

This bit is set and cleared by software. It controls the remapping of ADC DMA requests.
0: No remap (ADC DMA request mapped on DMA channel 1)
1: Remap (ADC DMA request mapped on DMA channel 2)

Bits 7:6 IR_MODI[1:0]: IR Modulation Envelope signal selection. Available on STM32F09x devices
only.

Those bits allow to select the modulation envelope signal between TIM16, USART1 and
USART4:

00: TIM16 selected
01: USART1 selected
10: USART4 selected
11: Reserved

Bit 5 Reserved, must be kept at reset value.

Bit 4 PA11_PA12_RMP: PA11 and PA12 remapping bit for small packages (28 and 20 pins).
Available on STM32F04x devices only.

This bit is set and cleared by software. It controls the mapping of either PA9/10 or PA11/12 pin
pair on small pin-count packages.

0: No remap (pin pair PA9/10 mapped on the pins)
1: Remap (pin pair PA11/12 mapped instead of PA9/10)

Bits 3:2 Reserved, must be kept at reset value.

Bits 1:0 MEM_MODE[1:0]: Memory mapping selection bits
These bits are set and cleared by software. They control the memory internal mapping at
address 0x0000 0000. After reset these bits take on the value selected by the actual boot
mode configuration. Refer to Section 2.5: Boot configuration for more details.

x0: Main Flash memory mapped at 0x0000 0000
01: System Flash memory mapped at 0x0000 0000
11: Embedded SRAM mapped at 0x0000 0000

9.1.2 SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1)

Address offset: 0x08
Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTIO[3:0]

‘Yl RM0091 Rev 10 169/1017

System configuration controller (SYSCFG) RM0091

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 EXTIx[3:0]: EXTI x configuration bits (x = 0 to 3)
These bits are written by software to select the source input for the EXTIx external interrupt.
x000: PA[X] pin
x001: PB[x] pin
x010: PC[x] pin
x011: PD[x] pin
x100: PE[x] pin
x101: PF[x] pin
other configurations: reserved

Note: Some of the I/O pins mentioned in the above register may not be available on small
packages.

9.1.3 SYSCFG external interrupt configuration register 2
(SYSCFG_EXTICR2)

Address offset: 0x0C
Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTI7[3:0] EXTIB[3:0] EXTI5[3:0] EXTI4[3:0]

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 EXTIx[3:0]: EXTI x configuration bits (x =4 to 7)
These bits are written by software to select the source input for the EXTIx external interrupt.
x000: PA[X] pin
x001: PB[x] pin
x010: PC[x] pin
x011: PD[x] pin
x100: PE[X] pin
x101: PF[x] pin
other configurations: reserved

Note: Some of the I/O pins mentioned in the above register may not be available on small
packages.

9.1.4 SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICR3)

Address offset: 0x10
Reset value: 0x0000

3

170/1017 RMO0091 Rev 10

RMO0091 System configuration controller (SYSCFG)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 EXTIx[3:0]: EXTI x configuration bits (x = 8 to 11)
These bits are written by software to select the source input for the EXTIx external interrupt.
x000: PA[X] pin
x001: PB[x] pin
x010: PC[x] pin
x011: PD[x] pin
x100: PE[X] pin
x101: PF[x] pin
other configurations: reserved

Note: Some of the I/0O pins mentioned in the above register may not be available on small
packages.

9.1.5 SYSCFG external interrupt configuration register 4
(SYSCFG_EXTICR4)

Address offset: 0x14
Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 EXTIx[3:0]: EXTI x configuration bits (x = 12 to 15)
These bits are written by software to select the source input for the EXTIx external interrupt.
x000: PA[X] pin
x001: PB[x] pin
x010: PC[x] pin
x011: PD[X] pin
x100: PE[X] pin
x101: PF[x] pin
other configurations: reserved

Note: Some of the I/O pins mentioned in the above register may not be available on small
packages.

3

RMO0091 Rev 10 171/1017

System configuration controller (SYSCFG) RM0091

9.1.6 SYSCFG configuration register 2 (SYSCFG_CFGR2)
Address offset: 0x18

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
SRAM
SRAM PVD S | LOCKUP
- ~ |PARITY
PEF LOCK | 'ock | ~LOCK
rc_wi w w w
Bits 31:9 Reserved, must be kept at reset value
Bit 8 SRAM_PEF: SRAM parity error flag
This bit is set by hardware when an SRAM parity error is detected. It is cleared by software by
writing ‘1”.
0: No SRAM parity error detected
1: SRAM parity error detected
Bits 7:3 Reserved, must be kept at reset value
Bit 2 PVD_LOCK: PVD lock enable bit
This bit is set by software and cleared by a system reset. It can be used to enable and lock the
PVD connection to TIM1/15/16/17 Break input, as well as the PVDE and PLS[2:0] in the
PWR_CR register.
0: PVD interrupt disconnected from TIM1/15/16/17 Break input. PVDE and PLS[2:0] bits can
be programmed by the application.
1: PVD interrupt connected to TIM1/15/16/17 Break input, PVDE and PLS[2:0] bits are read
only.
Bit 1 SRAM_PARITY_LOCK: SRAM parity lock bit
This bit is set by software and cleared by a system reset. It can be used to enable and lock the
SRAM parity error signal connection to TIM1/15/16/17 Break input.
0: SRAM parity error disconnected from TIM1/15/16/17 Break input
1: SRAM parity error connected to TIM1/15/16/17 Break input
Bit 0 LOCKUP_LOCK: Cortex-M0 LOCKUP bit enable bit

This bit is set by software and cleared by a system reset. It can be use to enable and lock the
connection of Cortex-M0 LOCKUP (Hardfault) output to TIM1/15/16/17 Break input.

0: Cortex-M0O LOCKUP output disconnected from TIM1/15/16/17 Break input

1: Cortex-M0 LOCKUP output connected to TIM1/15/16/17 Break input

9.1.7 SYSCFG interrupt line 0 status register (SYSCFG_ITLINEO)

A dedicated set of registers is implemented on STM32F09x to collect all pending interrupt
sources associated with each interrupt line into a single register. This allows users to check
by single read which peripheral requires service in case more than one source is associated
to the interrupt line.

All bits in those registers are read only, set by hardware when there is corresponding
interrupt request pending and cleared by resetting the interrupt source flags in the
peripheral registers.

172/1017

RMO0091 Rev 10 ‘Yl

RMO0091 System configuration controller (SYSCFG)
Address offset: 80h
System reset value: 0x0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
WWDG
r
Bits 31:1 Reserved (read as ‘0’)
Bit 0 WWDG: Window watchdog interrupt pending flag
9.1.8 SYSCFG interrupt line 1 status register (SYSCFG_ITLINE1)
Address offset: 84h
System reset value: 0x0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VDDIO2 | PVDOUT
r r

Bits 31:2 Reserved (read as ‘0’)

Bit 1 VDDIO2: VDDIO2 supply monitoring interrupt request pending (EXTI line 31)

Bit 0 PVDOUT: PVD supply monitoring interrupt request pending (EXTI line 16). This bit is not
available on STM32F0x8 devices.

9.1.9 SYSCFG interrupt line 2 status register (SYSCFG_ITLINE2)

Address offset: 88h

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RTC_ | RTC_ | RTC_
ALRA |TSTAMP | WAKEUP
r r r
Bits 31:3 Reserved (read as ‘0’)
Bit2 RTC_ALRA: RTC Alarm interrupt request pending (EXTI line 17)
Bit 1 RTC_TSTAMP: RTC Tamper and TimeStamp interrupt request pending (EXTI line 19)
Kys RM0091 Rev 10 173/1017

System configuration controller (SYSCFG) RM0091

Bit 0 RTC_WAKEUP: RTC Wake Up interrupt request pending (EXT]I line 20)

9.1.10 SYSCFG interrupt line 3 status register (SYSCFG_ITLINE3)
Address offset: 8Ch

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FLASH_
ITF
r

Bits 31:1 Reserved (read as ‘0’)
Bit 0 FLASH_ITF: Flash interface interrupt request pending

9.1.11 SYSCFG interrupt line 4 status register (SYSCFG_ITLINE4)
Address offset: 90h

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
CRS RCC

r r

Bits 31:2 Reserved (read as ‘0’)
Bit 1 CRS: Clock recovery system interrupt request pending

Bit 0 RCC: Reset and clock control interrupt request pending

9.1.12 SYSCFG interrupt line 5 status register (SYSCFG_ITLINES)
Address offset: 94h

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
EXTIM1 | EXTIO

r r

Bits 31:2 Reserved (read as ‘0’)

3

174/1017 RMO0091 Rev 10

RMO0091 System configuration controller (SYSCFG)

Bit 1 EXTI1: EXTI line 1 interrupt request pending
Bit 0 EXTIO: EXTI line O interrupt request pending

9.1.13 SYSCFG interrupt line 6 status register (SYSCFG_ITLINEG6)
Address offset: 98h

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1

EXTI3

EXTI2

Bits 31:2 Reserved (read as ‘0’)
Bit 1 EXTI3: EXTI line 3 interrupt request pending
Bit 0 EXTI2: EXTI line 2 interrupt request pending

9.1.14 SYSCFG interrupt line 7 status register (SYSCFG_ITLINE7)
Address offset: 9Ch

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

16

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1

EXTI15 |EXTIM14 | EXTI13 | EXTI12 | EXTI11 | EXTI10 | EXTI9 | EXTI8 | EXTI7 | EXTI6 | EXTIS

EXTI4

r r r r r r r r r r r

Bits 31:10 Reserved (read as ‘0’)

Bit 11 EXTI15: EXTI line 15 interrupt request pending

Bit 10 EXTI14: EXTI line 14 interrupt request pending
Bit 9 EXTI13: EXTI line 13 interrupt request pending
Bit 8 EXTI12: EXTI line 12 interrupt request pending
Bit 7 EXTI11: EXTI line 11 interrupt request pending
Bit 6 EXTI10: EXTI line 10 interrupt request pending
Bit 5 EXTI9: EXTI line 9 interrupt request pending
Bit 4 EXTI8: EXTI line 8 interrupt request pending
Bit 3 EXTI7: EXTI line 7 interrupt request pending
Bit 2 EXTI6: EXTI line 6 interrupt request pending
Bit 1 EXTI5: EXTI line 5 interrupt request pending

3

RMO0091 Rev 10

175/1017

System configuration controller (SYSCFG) RMO0091

Bit 0 EXTI4: EXTI line 4 interrupt request pending

9.1.15 SYSCFG interrupt line 8 status register (SYSCFG_ITLINES)
Address offset: AOh

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TCS_ | TCS_
EOA | MCE
r r

Bits 31:2 Reserved (read as ‘0’)
Bit 1 TCS_EOA: Touch sensing controller end of acquisition interrupt request pending

Bit 0 TCS_MCE: Touch sensing controller max count error interrupt request pending

9.1.16 SYSCFG interrupt line 9 status register (SYSCFG_ITLINE9)
Address offset: Adh

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DMA1_
CH1
r

Bits 31:1 Reserved (read as ‘0’)
Bit 0 DMA1_CH1: DMA1 channel 1 interrupt request pending

9.1.17 SYSCFG interrupt line 10 status register (SYSCFG_ITLINE10)
Address offset: A8h

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

DMA2 | DMA2 | DMA1 | DMA1
CH2 | CH1 | CH3 | _CH2

3

176/1017 RMO0091 Rev 10

RMO0091 System configuration controller (SYSCFG)

Bits 31:4 Reserved (read as ‘0’)
Bit 3 DMA2_CH2: DMA2 channel 2 interrupt request pending
Bit2 DMA2_CH1: DMA2 channel 1 interrupt request pending
Bit 1 DMA1_CH3: DMA1 channel 3 interrupt request pending
Bit 0 DMA1_CH2: DMA1 channel 2 interrupt request pending

9.1.18 SYSCFG interrupt line 11 status register (SYSCFG_ITLINE11)
Address offset: ACh

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

DMA2 | DMA2 | DMA2 | DMA1 | DMA1 | DMA1 | DMA1
_CH5 | _CH4 | CH3 | _CH7 | CHB | CH5 | _CH4

Bits 31:7 Reserved (read as ‘0’)
Bit 6 DMA2_CH5: DMA2 channel 5 interrupt request pending
Bit 5 DMA2_CH4: DMA2 channel 4 interrupt request pending
Bit 4 DMA2_CH3: DMA2 channel 3 interrupt request pending
Bit 3 DMA1_CH7: DMA1 channel 7 interrupt request pending
Bit2 DMA1_CH6: DMA1 channel 6 interrupt request pending
Bit 1 DMA1_CHS5: DMA1 channel 5 interrupt request pending
Bit 0 DMA1_CH4: DMA1 channel 4 interrupt request pending

9.1.19 SYSCFG interrupt line 12 status register (SYSCFG_ITLINE12)
Address offset: BOh

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
COMP2 | COMP1 | ADC

Bits 31:3 Reserved (read as ‘0’)
Bit 2 COMP2: Comparator 2 interrupt request pending (EXT]I line 22)
Bit 1 COMP1: Comparator 1 interrupt request pending (EXT]I line 21)

3

RMO0091 Rev 10 177/1017

System configuration controller (SYSCFG)

RMO0091

Bit 0 ADC: ADC interrupt request pending

9.1.20 SYSCFG interrupt line 13 status register (SYSCFG_ITLINE13)
Address offset: B4h

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TIMA_ | TIM1_ | TIM1_ | TIM1_
BRK | UPD | TRG | ccu
r r r r
Bits 31:4 Reserved (read as ‘0’)
Bit 3 TIM1_BRK: Timer 1 break interrupt request pending
Bit 2 TIM1_UPD: Timer 1 update interrupt request pending
Bit 1 TIM1_TRG: Timer 1 trigger interrupt request pending
Bit 0 TIM1_CCU: Timer 1 commutation interrupt request pending
9.1.21 SYSCFG interrupt line 14 status register (SYSCFG_ITLINE14)
Address offset: B8h
System reset value: 0x0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
TIM1_
cC
r
Bits 31:1 Reserved (read as ‘0’)
Bit 0 TIM1_CC: Timer 1 capture compare interrupt request pending
9.1.22 SYSCFG interrupt line 15 status register (SYSCFG_ITLINE15)
Address offset: BCh
System reset value: 0x0000
178/1017 RM0091 Rev 10 1S7]

RMO0091 System configuration controller (SYSCFG)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
TIM2

r

Bits 31:1 Reserved (read as ‘0’)
Bit 0 TIM2: Timer 2 interrupt request pending

9.1.23 SYSCFG interrupt line 16 status register (SYSCFG_ITLINE16)
Address offset: COh

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TIM3
r

Bits 31:1 Reserved (read as ‘0’)
Bit 0 TIM3: Timer 3 interrupt request pending

9.1.24 SYSCFG interrupt line 17 status register (SYSCFG_ITLINE17)
Address offset: C4h

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
DAC TIM6

r r

Bits 31:1 Reserved (read as ‘0’)
Bit 1 DAC: DAC underrun interrupt request pending
Bit 0 TIM6: Timer 6 interrupt request pending

9.1.25 SYSCFG interrupt line 18 status register (SYSCFG_ITLINE18)
Address offset: C8h

System reset value: 0x0000

3

RMO0091 Rev 10 179/1017

System configuration controller (SYSCFG) RMO0091

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
TIM7

r

Bits 31:1 Reserved (read as ‘0’)
Bit 0 TIM7: Timer 7 interrupt request pending

9.1.26 SYSCFG interrupt line 19 status register (SYSCFG_ITLINE19)
Address offset: CCh

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TIM14
r

Bits 31:1 Reserved (read as ‘0’)
Bit 0 TIM14: Timer 14 interrupt request pending

9.1.27 SYSCFG interrupt line 20 status register (SYSCFG_ITLINE20)
Address offset: DOh

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TIM15
r

Bits 31:1 Reserved (read as ‘0’)
Bit 0 TIM15: Timer 15 interrupt request pending

9.1.28 SYSCFG interrupt line 21 status register (SYSCFG_ITLINE21)
Address offset: D4h

System reset value: 0x0000

3

180/1017 RMO0091 Rev 10

RMO0091 System configuration controller (SYSCFG)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TIM16
r
Bits 31:1 Reserved (read as ‘0’)
Bit 0 TIM16: Timer 16 interrupt request pending
9.1.29 SYSCFG interrupt line 22 status register (SYSCFG_ITLINE22)
Address offset: D8h
System reset value: 0x0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TIM17
r
Bits 31:1 Reserved (read as ‘0’)
Bit 0 TIM17: Timer 17 interrupt request pending
9.1.30 SYSCFG interrupt line 23 status register (SYSCFG_ITLINE23)
Address offset: DCh
System reset value: 0x0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
12C1
r
Bits 31:1 Reserved (read as ‘0’)
Bit 0 12C1: 12C1 interrupt request pending, combined with EXTI line 23
9.1.31 SYSCFG interrupt line 24 status register (SYSCFG_ITLINE24)
Address offset: EOh
System reset value: 0x0000
1S7] RM0091 Rev 10 181/1017

System configuration controller (SYSCFG) RMO0091

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
12C2
r

Bits 31:1 Reserved (read as ‘0’)
Bit 0 12C2: 12C2 interrupt request pending

9.1.32 SYSCFG interrupt line 25 status register (SYSCFG_ITLINE25)
Address offset: E4h

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SPI1
r

Bits 31:1 Reserved (read as ‘0’)
Bit 0 SPI1: SPI1 interrupt request pending

9.1.33 SYSCFG interrupt line 26 status register (SYSCFG_ITLINE26)
Address offset: E8h

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
SPI2
r

Bits 31:1 Reserved (read as ‘0’)
Bit 0 SPI2: SPI2 interrupt request pending

9.1.34 SYSCFG interrupt line 27 status register (SYSCFG_ITLINE27)
Address offset: ECh

System reset value: 0x0000

3

182/1017 RMO0091 Rev 10

RMO0091 System configuration controller (SYSCFG)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
USART1
r

Bits 31:1 Reserved (read as ‘0’)
Bit 0 USART1: USART1 interrupt request pending, combined with EXTI line 25

9.1.35 SYSCFG interrupt line 28 status register (SYSCFG_ITLINE28)
Address offset: FOh

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
USART2

r

Bits 31:1 Reserved (read as ‘0’)
Bit 0 USART2: USART2 interrupt request pending, combined with EXTI line 26

9.1.36 SYSCFG interrupt line 29 status register (SYSCFG_ITLINE29)
Address offset: F4h

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
USART8 | USART7 | USART6 | USARTS5 | USART4 | USART3

r r r r r r

Bits 31:6 Reserved (read as ‘0’)
Bit 5 USART8: USARTS interrupt request pending
Bit 4 USART7: USARTY7 interrupt request pending
Bit 3 USART6: USARTG interrupt request pending
Bit 2 USARTS: USARTS interrupt request pending
Bit 1 USART4: USART4 interrupt request pending
Bit 0 USART3: USART3 interrupt request pending, combined with EXTI line 28.

3

RMO0091 Rev 10 183/1017

System configuration controller (SYSCFG) RMO0091

9.1.37 SYSCFG interrupt line 30 status register (SYSCFG_ITLINE30)
Address offset: F8h

System reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
CAN CEC

r r

Bits 31:2 Reserved (read as ‘0’)
Bit 1 CAN: CAN interrupt request pending
Bit 0 CEC: CEC interrupt request pending, combined with EXTI line 27

3

184/1017 RMO0091 Rev 10

RMO0091 System configuration controller (SYSCFG)

9.1.38 SYSCFG register maps

The following table gives the SYSCFG register map and the reset values.

Table 26. SYSCFG register map and reset values

Offset| Register |5|2/Q|QINIQIR|IRINSIR2I2=|C|22|2|N z|2]o||~o|v|<|m|a|~|o
Se
oo INEIN
oo oo |S]S|a oo |% (L |X | (o o =
ZEEEEPE R e E2EE EEERS|EE 2l || g
°‘|°‘|°‘|°‘,<<°‘|U-u_%%u_uu_u_ °‘|”‘|II§§°‘|Q x, o
<<<<§§<Ol®"—'—'—'—®'oolr\|col <<<§(<§(DIDI< Q o Q
SYSCFG_CFGR1 S=EIZRREEI2IO0028 68 ZZ2IBIXIXI=Z]| = z Q
0x00 D|D|D|D|"’|NID|§°'|86°'°'°'°' 518192 |~ 5] ¢ T, =
MN‘—FEEQL)'OﬁﬁQIOIOIOl ‘v:g"tﬁ,—'ro— = =
222 R<|x|g|a S Sl S) 55122k < w
I—I—I——ggw ':’:'_}_53:)4: o =
D D
Reset value ojlojofofofof[ofo][oflo][ofof[o]0O]O oooooooo‘o 0 x|x
0x08 SYSCFG_EXTICR1 EXTI3[3:0] | EXTI2[3:0] | EXTI1[3:0] | EXTIO[3:0]
X
Reset value 0|o|0|0 0|0|o|0 o|0|0|o 0|0|0|0
0X0C SYSCFG_EXTICR2 EXTI7[3:0] | EXTI6[3:0] | EXTI5[3:0] | EXTI4[3:0]
X
Reset value 0|o|0|0 0|0|o|0 o|0|0|o 0|0|0|0
0x10 SYSCFG_EXTICR3 EXTI11[3:0] | EXTIM0[3:0] | EXTI9[3:0] | EXTI8[3:0]
X
Reset value 0|o|0|0 0|0|o|0 o|0|0|o 0|0|0|0
oxia SYSCFG_EXTICR4 EXTI15[3:0] | EXTI14[3:0] | EXTI13[3:0] | EXTI12[3:0]
X
Reset value ofofofof[ofofofo[oJo[oJo[ofo]o]o
X
8
w X _'| (%
w O |> |O
o O |~ [=2
SYSCFG_CFGR2 s' 30z |
0x18 < [a) < |5
o4 > %0
(7] o s (@]
z |-
©
2]
Reset value 0 0(0]0
Table 27. SYSCFG register map and reset values for STM32F09x devices
Offset| Register |5|2/QIQINIQIRIIRINSIR|2I2|E|C|L2|2|Nz|2]o|w|~o|v|+|o|al-|o
0x1D to Reserved Reserved
Ox7F Reset value
(O]
SYSCFG_ITLINEO g
0x80 <
Reset value
ap
SYSCFG_ITLINE1 318
0x84 o>
> |
Reset value
o |
o}
e
SYSCFG_ITLINE2 S IZRES
0x88 o' |F
=[O o
x 'D_f 'Q_:
Reset value
‘Yl RM0091 Rev 10 185/1017

System configuration controller (SYSCFG) RMO0091

Table 27. SYSCFG register map and reset values for STM32F09x devices (continued)

Offset| Register |TIQIQIQ K|IQ|KRI|KQNS|KRSRT|RRT2IVE|R|o|0|~0|1|<|m a0
[
=
|

SYSCFG_ITLINE3 T

0x8C 2
|
L

Reset value
SYSCFG_ITLINE4 218
0x90 O |x
Reset value
halll =
SYSCFG_ITLINES E |F
0x94 il
Reset value
@ N
SYSCFG_ITLINE6 ; ;
0x98 [
Reset value
LIFIRIGIEIE|e ||~ |e |0 |
SYSCFG_ITLINE7 EleElElElEIEIEIEIEIEIE|IE
0x9C ol il el el ol el e A BBl
Reset value
]
S8
SYSCFG_ITLINES w13
0xA0 uo) (%)
I
Reset value
I
O
SYSCFG_ITLINE9 <!
0xA4 <
=
a
Reset value
AN [z [|
I |||
O |O |0 |0
SYSCFG_ITLINE10 <M [2
OxA8 < (< [<€ <
= |12 (==
a|aa|a
Reset value
W |t |[M (s O |0 S
IT(Z|ZT|Z|Z|T
O |O [0 |0 |0 |0, |0
SYSCFG_ITLINE11 DL Pt Dt e
0xAC << || (< (< (<
S22 (=== |=
alaja|ja|la|a|a
Reset value
N | —
oo |o
SYSCFG_ITLINE12 = [Z |a
0xBO O [0 <
O |O
Reset value
¥ [a =)
5B ER
SYSCFG_ITLINE13 2020 S
0xB4 S22 =
= | | |F
Reset value
[8)
O
SYSCFG_ITLINE14 _
0xB8 s
=
Reset value
SYSCFG_ITLINE15 %
0xBC =
Reset value
SYSCFG_ITLINE16 g
0xCO0 =
Reset value

3

186/1017 RMO0091 Rev 10

RMO0091 System configuration controller (SYSCFG)

Table 27. SYSCFG register map and reset values for STM32F09x devices (continued)

Offset| Register |52 Q& K|&|8|3|3|N|5|R(2|2[E(e[0X[2|ME|g|o|o|~ o]0 /o~ |o

[SHE]

SYSCFG_ITLINE17 I (=

0xC4 [l =
Reset value

SYSCFG_ITLINE18 E

0xC8 =
Reset value

<

SYSCFG_ITLINE19 s

0xCC =
Reset value

[Te)

SYSCFG_ITLINE20 s

0xDO =
Reset value

o

SYSCFG_ITLINE21 s

0xD4 =
Reset value

N~

SYSCFG_ITLINE22 s

0xD8 =
Reset value

SYSCFG_ITLINE23 %)

0xDC I
Reset value

SYSCFG_ITLINE24 13

OxEO - g
Reset value

SYSCFG_ITLINE25 E

OxE4 n
Reset value

SYSCFG_ITLINE26 E

OxE8 n
Reset value

=

SYSCFG_ITLINE27 i‘:

OxEC)

o)
Reset value

N

=

SYSCFG_ITLINE28 2(5

0xFO %)

o)
Reset value

™

=

SYSCFG_ITLINE29 5(5

OxF4)

=)
Reset value

SYSCFG_ITLINE30 <Z(8

0xF8 [SHI®)
Reset value

Refer to Section 2.2 on page 46 for the register boundary addresses.
Kys RM0091 Rev 10 187/1017

Direct memory access controller (DMA) RM0091

10

10.1

10.2

188/1017

Direct memory access controller (DMA)

Introduction

The direct memory access (DMA) controller is a bus master and system peripheral.

The DMA is used to perform programmable data transfers between memory-mapped
peripherals and/or memories, upon the control of an off-loaded CPU.

The DMA controller features a single AHB master architecture.

There is one instance of DMA with up to 7 channels, except for the STM32F09x devices that
also include a DMA2 with 5 channels.

Each channel is dedicated to managing memory access requests from one or more
peripherals. Each DMA includes an arbiter for handling the priority between DMA requests.

DMA main features

e Single AHB master
e Peripheral-to-memory, memory-to-peripheral, memory-to-memory and peripheral-to-
peripheral data transfers

e Access, as source and destination, to on-chip memory-mapped devices such as Flash
memory, SRAM, and AHB and APB peripherals

e All DMA channels independently configurable:

— Each channel is associated either with a DMA request signal coming from a
peripheral, or with a software trigger in memory-to-memory transfers. This
configuration is done by software.

— Priority between the requests is programmable by software (4 levels per channel:
very high, high, medium, low) and by hardware in case of equality (such as
request to channel 1 has priority over request to channel 2).

— Transfer size of source and destination are independent (byte, half-word, word),
emulating packing and unpacking. Source and destination addresses must be
aligned on the data size.

— Support of transfers from/to peripherals to/from memory with circular buffer
management

— Programmable number of data to be transferred: 0 to 2164

e Generation of an interrupt request per channel. Each interrupt request is caused from
any of the three DMA events: transfer complete, half transfer, or transfer error.

3

RMO0091 Rev 10

RMO0091 Direct memory access controller (DMA)

10.3 DMA implementation

10.3.1 DMA1 and DMA2
DMA1 and DMAZ2 are implemented with the hardware configuration parameters shown in
the table below.

Table 28. DMA1 and DMA2 implementation
Feature DMAA1 DMA2 (only f(_)r STM32F09x
devices)
Number of channels Up to 7
1. 5 channels for STM32F03x/04x/05x and 7 channels for STM32F07x.

10.3.2 DMA request mapping
DMA controller on STM32F03x/04x/05x/07x
The hardware requests from the peripherals (TIMx, ADC, DAC, SPI, 12C, and USARTX) are
simply logically ORed before entering the DMA. This means that on one channel, only one
request must be enabled at a time.

The peripheral DMA requests can be independently activated/de-activated by programming
the DMA control bit in the registers of the corresponding peripheral.

Caution: A same peripheral request can be assigned to two different channels only if the application
ensures that these channels are not requested to be served at the same time. In other
words, if two different channels receive a same asserted peripheral request at the same
time, an unpredictable DMA hardware behavior occurs.

Table 29 and Table 30 list the DMA requests for each channel.
Table 29. DMA requests for each channel on STM32F03x/04x/05x devices
Peripheral Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
ADC ADC(") ADC®) - - -
SPI - SPI1_RX SPI1_TX SPI2_RX SPI2_TX
2) (2)
)) (1) | USART1_TX®) | USART1_RX
USART USART1_TX USART1_RX USART2 TX USARTZ2 RX
12C - 12C1_TX 12C1_RX 12C2_TX 12C2_RX
TIM1_CH4
TIM1 - TIM1_CH1 TIM1_CH2 TIM1_TRIG 'I:ll_ll\'/\l/l11_CUI-'|33
TIM1_COM -
TIM2 TIM2_CH3 TIM2_UP TIM2_CH2 TIM2_CH4 TIM2_CH1
TIM3_CH4 TIM3_CH1
TiM3 i TIM3_CHS3 TIM3_UP TIM3_TRIG)
TIM6_UP
TIME / DAC) . DAC_Channel1 .)
TIM15_CHA1
TIM15_UP
TIM13 i) i) TIM15_TRIG
TIM15_COM
Kys RM0091 Rev 10 189/1017

Direct memory access controller (DMA)

RMO0091

Table 29. DMA requests for each channel on STM32F03x/04x/05x devices (continued)

Peripheral Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
TIM16_CH1(") | TIM16_CH1@
TIM16 i) TiIM16_UP™M | TIM16_UP®@ i
TIM17_CH1(" | TIM17_CH1®
Tim17 TiM17_UP! | TIM17_up® i) i

1. DMA request mapped on this DMA channel only if the corresponding remapping bit is cleared in SYSCFG configuration
register 1 (SYSCFG_CFGR1).

2. DMA request mapped on this DMA channel only if the corresponding remapping bit is setin SYSCFG configuration register

1 (SYSCFG_CFGR1).

Table 30. DMA requests for each channel on STM32F07x devices

Channel

Peripheral 1 Channel 2| Channel 3 | Channel 4 Channel 5 Channel 6 Channel 7
ADC ADc") | ADC®) - - - - -
SPI - SPIM_RX | SPIM_TX |[SPi2_RX(N | spi2_ XM | spi2_RX®? SPI2_TX®
UST/;'%T)L USQ('_‘ZF— USTAX'?ZT)L USQE;P— USARTZ_RXEZ; USART2_TX§2;
_ 1 1
USART USART3_ | USART3_ | USART2_ | USART2_ USSAEFI%R;X USQE;%T;(X
TX@ RX® ™M RX(M - -
12¢c - '20(11)—TX 12c1_RxM | 12c2_TX 12C2_RX 2c1_TXx@ 12c1_RXx@
TIM1_CH4 | TIM1_CH3 | TIM1_CH1®?
TIM1 - gm}ﬂ T'M1(1—,CH2 TIM1_TRIG M TIM1_CH2(® -
TIM1_COM | TIM1_UP | TIM1_CH3@
TIM2_ TIM2_CH2 | TIM2_CH4 TIM2_CH2®)
TIM2 chs | TM2_UP) %) TIM2_CH1 - TIM2_CH4®
TIMI?_)CH‘I "
TIM3_CH4 1 TIM3_CH1®
TiM3 i TIM3_CH3 TIM3_UP | TIM3_TRIG) TIM3_TRIG®))
()
TIM6 / TIM6_UP
DAC i i DAC_)) i)
Channel1
TIM7_UP
TIM7 / =
DAC - - - DAC_Chan - - -
nel2
TIM15_CH1
TIM15_UP
TIM15))) . TIM15_TRIG) .
TIM15_COM
T|M16_CH1 T|M1(6270H1 (3)
TIM16)) A) TIM16_CH1(3))
TiM16_UP™ TIM1(26)_UP TIM16_UP
TIM17_ | TIM17_
cH1M CH1® TIM17_CH1®)
TiM17 TIM17_ | TIM17_ i)) i TIM17_upP®)
up(™ up®@
190/1017 RM0091 Rev 10 ‘7]

RM0091

Direct memory access controller (DMA)

1. DMA request mapped on this DMA channel only if the corresponding remapping bit is cleared in SYSCFG configuration
register 1 (SYSCFG_CFGR1).

DMA request mapped on this DMA channel only if the corresponding remapping bit is set in SYSCFG configuration register

1 (SYSCFG_CFGR1).

DMA request mapped on this DMA channel only if the additional RMP2 remapping bit is set in SYSCFG configuration

register 1 (SYSCFG_CFGR1).

Caution:

3

DMA1 and DMA2 controllers on STM32F09x devices

The hardware requests from the peripherals are mapped to the DMA channels through the
DMA_CSELR channel selection register. On one channel, only one request must be
enabled at a time. Refer to Figure 21.

The peripheral DMA requests can be independently activated/de-activated by programming
the DMA control bit in the registers of the corresponding peripheral.

A same peripheral request can be assigned to two different channels only if the application
ensures that these channels are not requested to be served at the same time. In other
words, if two different channels receive a same asserted peripheral request at the same
time, an unpredictable DMA hardware behavior occurs.

The default mapping position 0 ensures the compatibility with the DMA mapping used on
other STM32FO0xx products. The hardware requests from the peripherals (TIMx, ADC, DAC,
SPI, 12C, and USARTX) are simply logically ORed before entering the DMA. This means
that on one channel, only one request must be enabled at a time.

Alternate mapping positions 1 to 15 brings higher flexibility to map hardware requests on
DMA channels. When alternate mapping position is used for some peripheral, the same
request is removed from the default mapping position to avoid conflicts.

Table 31 and Table 32 list the DMA requests for each channel and alternate position.

RMO0091 Rev 10 191/1017

Direct memory access controller (DMA) RM0091

Figure 21. DMAX request routing architecture on STM32F09x devices

default_ch1
req1
req2

re;q1’< L——————— CH1 DMA
C18[3'0] CH2
CH3
CH4
CH5
default_ch2 CHé
req1 CH7
req2
réq1’-’~
C28[3:0]

’

default_ch7
req1
req2

réq1’%

C7S[30]

MSv35592V1

1. Channels 6 and 7 are not available on DMA2.
2. Once a DMA request is selected on position 1 to 15, it disappears from the default location on position 0.

3

192/1017 RMO0091 Rev 10

RMO0091 Direct memory access controller (DMA)
Table 31. DMA1 requests for each channel on STM32F09x devices
[(.‘:,’XOS] Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7
TIM2 CH3 | TiM2_UP | TIM3_CH4 | qypq cpg | TMIUP - -
- TIM3_CH3 | TIM3_UP | TM1_TRIG | TIM2_CH1 - -
TIM1_COM
B - B TIM15_CH1 - B
TIM6_UP | TimM7_up | TIM15_UP
ADC _ DAC DAC TIM15_TRIG _ -
Channel1 Channel2 TIM15_COM
- USART1_TX | USART1_RX | USART2_TX | USART2_ RX | USART3_ RX|USART3_TX
0000 - - - - - USART4_ RX|USART4_TX
- SPI1_RX SPI1_TX SPI2_RX SPI2_TX - -
- 12C1_TX 12C1_RX 12C2_TX 12C2_RX - -
- TIM1_CH1 | TIM1_CH2 - TIM1_CH3 - -
- - TIM2_CH2 | TIM2_CH4 - - -
TIM17_CH1) TIM16_CH1 | TIM3_CH1)))
TIM17_UP TIM16_UP TIM3_TRIG
TIM6_UP TIM7_UP
0001 ADC ADC DAC_ DAC_ - - -
Channel1 Channel2
0010 - 12C1_TX 12C1_RX 12C2_TX [2C2_RX 12C1_TX 12C1_RX
0011 - SPI1_RX SPI1_TX SPI2_RX SPI2_TX SPI2_RX SPI2_TX
TIM1_CH1
0100 - TIM1_CH1 TIM1_CH2 - TIM1_CH3 TIM1_CH2 -
TIM1_CH3
TIM2_CH2
0101 - - TIM2_CH2 TIM2_CH4 - - TIM2_CH4
0110))) TIM3_CH1) TIM3_CH?1)
TIM3_TRIG TIM3_TRIG
0111 TIM17_CH1 | TIM17_CH1 | TIM16_CH1 | TIM16_CH1) TIM16_CH1 | TIM17_CHA1
TIM17_UP TIM17_UP TIM16_UP TIM16_UP TIM16_UP TIM17_UP
USART1
1000 RX USART1_TX | USART1_RX | USART1_TX | USART1_ RX | USART1_RX|USART1_TX
USART2_
1001 RX USART2_TX | USART2_RX| USART2_TX | USART2_ RX | USART2_RX|USART2_TX
USART3
1010 RX USART3_TX | USART3_ RX| USART3_TX | USART3_RX |USART3_ RX |USART3_TX
USART4
1011 RX USART4_TX | USART4_RX| USART4_TX | USART4_ RX | USART4_ RX|USART4_TX
USART5_
1100 RX USART5_TX | USART5_ RX| USART5_TX | USART5_ RX | USART5_ RX|USART5_TX
USART6
1101 RX USART6_TX | USART6_ RX| USART6_TX | USART6_ RX | USART6_ RX | USART6_TX
Kys RM0091 Rev 10 193/1017

Direct memory access controller (DMA) RM0091
Table 31. DMA1 requests for each channel on STM32F09x devices (continued)
[?;XOS] Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7
USART7
1110 RX USART7_TX |USART7_RX| USART7_TX | USART7_ RX | USART7_RX|USART7_TX
USARTS
111 RX USART8_TX |USART8_ RX| USART8 TX | USART8 RX|USART8 RX|USART8 TX
Table 32. DMA2 requests for each channel on STM32F09x devices
CxS[3:0] Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
0000 - - - - -
TIM6_UP TIM7_UP
0001)) DAC_Channel1 DAC_Channel2 ADC
0010 12C2_TX 12C2_RX - - -
0011 - - SPI1_RX SPI1_TX -
0100 - - - - -
0101 - - - - -
0110 - - - - -
0111 - - - - -
1000 USART1_TX USART1_RX USART1_RX USART1_TX USART1_TX
1001 USART2_TX USART2_RX USART2_RX USART2_TX USART2_TX
1010 USART3_TX USART3_RX USART3_RX USART3_TX USART3_TX
1011 USART4_TX USART4_RX USART4_RX USART4_TX USART4_TX
1100 USART5_TX USART5_RX USART5_RX USART5_TX USART5_TX
1101 USART6_TX USART6_RX USART6_RX USART6_TX USART6_TX
1110 USART7_TX USART7_RX USART7_RX USART7_TX USART7_TX
111 USART8_TX USART8_RX USART8_RX USARTS8_TX USART8_TX
10.4 DMA functional description
10.4.1 DMA block diagram
194/1017 RM0091 Rev 10 Kys

RM0091

Direct memory access controller (DMA)

The DMA block diagram is shown in the figure below.

Figure 22. DMA block diagram

Cortex-M0

Arbiter

7S

System

DMA

AHB Slave <

FLTF K> Flash
e > SRAM
£
Reset & clock
R PIOA||GPIOB
é control (RCC), CRC| [GPIOA(GPIO
WARVARY,
/ GPIOC||GPIODIGPIOE GPIOF
ADC SPI1/1281
USART2 TIM2
12C2 TIM3
12C1 TIM6
TIM7 TIM15
USART3 TIM16
USART4 TIM17

MS19218V5

The DMA controller performs direct memory transfer by sharing the AHB system bus with
other system masters. The bus matrix implements round-robin scheduling. DMA requests
may stop the CPU access to the system bus for a number of bus cycles, when CPU and

DMA target the same destination (memory or peripheral).

According to its configuration through the AHB slave interface, the DMA controller arbitrates
between the DMA channels and their associated received requests. The DMA controller

also schedules the DMA data transfers over the single AHB port master.

The DMA controller generates an interrupt per channel to the interrupt controller.

10.4.2 DMA transfers

The software configures the DMA controller at channel level, in order to perform a block
transfer, composed of a sequence of AHB bus transfers.

A DMA block transfer may be requested from a peripheral, or triggered by the software in
case of memory-to-memory transfer.

3

RMO0091 Rev 10

195/1017

Direct memory access controller (DMA) RM0091

Note:

10.4.3

196/1017

After an event, the following steps of a single DMA transfer occur:
1. The peripheral sends a single DMA request signal to the DMA controller.

2. The DMA controller serves the request, depending on the priority of the channel
associated to this peripheral request.

3. As soon as the DMA controller grants the peripheral, an acknowledge is sent to the
peripheral by the DMA controller.

4. The peripheral releases its request as soon as it gets the acknowledge from the DMA
controller.

5. Once the request is de-asserted by the peripheral, the DMA controller releases the
acknowledge.

The peripheral may order a further single request and initiate another single DMA transfer.

The request/acknowledge protocol is used when a peripheral is either the source or the
destination of the transfer. For example, in case of memory-to-peripheral transfer, the
peripheral initiates the transfer by driving its single request signal to the DMA controller. The
DMA controller reads then a single data in the memory and writes this data to the peripheral.

For a given channel x, a DMA block transfer consists of a repeated sequence of:

e asingle DMA transfer, encapsulating two AHB transfers of a single data, over the DMA
AHB bus master:

— asingle data read (byte, half-word or word) from the peripheral data register or a
location in the memory, addressed through an internal current peripheral/memory
address register.

The start address used for the first single transfer is the base address of the
peripheral or memory, and is programmed in the DMA_CPARx or DMA_CMARX
register.

— asingle data write (byte, half-word or word) to the peripheral data register or a
location in the memory, addressed through an internal current peripheral/memory
address register.

The start address used for the first transfer is the base address of the peripheral or
memory, and is programmed in the DMA_CPARx or DMA_CMARX register.

e post-decrementing of the programmed DMA_CNDTRX register
This register contains the remaining number of data items to transfer (number of AHB
‘read followed by write’ transfers).

This sequence is repeated until DMA_CNDTRXx is null.

The AHB master bus source/destination address must be aligned with the programmed size
of the transferred single data to the source/destination.

DMA arbitration

The DMA arbiter manages the priority between the different channels.

When an active channel x is granted by the arbiter (hardware requested or software
triggered), a single DMA transfer is issued (such as a AHB ‘read followed by write’ transfer
of a single data). Then, the arbiter considers again the set of active channels and selects the
one with the highest priority.

3

RMO0091 Rev 10

RM0091

Direct memory access controller (DMA)

10.4.4

Note:

3

The priorities are managed in two stages:

e software: priority of each channel is configured in the DMA_CCRX register, to one of
the four different levels:

— very high
— high
— medium
- low

e hardware: if two requests have the same software priority level, the channel with the
lowest index gets priority. For example, channel 2 gets priority over channel 4.

When a channel x is programmed for a block transfer in memory-to-memory mode,

re arbitration is considered between each single DMA transfer of this channel x. Whenever
there is another concurrent active requested channel, the DMA arbiter automatically
alternates and grants the other highest-priority requested channel, which may be of lower
priority than the memory-to-memory channel.

DMA channels

Each channel may handle a DMA transfer between a peripheral register located at a fixed
address, and a memory address. The amount of data items to transfer is programmable.

The register that contains the amount of data items to transfer is decremented after each
transfer.

A DMA channel is programmed at block transfer level.

Programmable data sizes

The transfer sizes of a single data (byte, half-word, or word) to the peripheral and memory
are programmable through, respectively, the PSIZE[1:0] and MSIZE[1:0] fields of the
DMA_CCRXx register.

Pointer incrementation

The peripheral and memory pointers may be automatically incremented after each transfer,
depending on the PINC and MINC bits of the DMA_CCRXx register.

If the incremented mode is enabled (PINC or MINC set to 1), the address of the next
transfer is the address of the previous one incremented by 1, 2 or 4, depending on the data
size defined in PSIZE[1:0] or MSIZE[1:0]. The first transfer address is the one programmed
in the DMA_CPARx or DMA_CMARX register. During transfers, these registers keep the
initially programmed value. The current transfer addresses (in the current internal
peripheral/memory address register) are not accessible by software.

If the channel x is configured in non-circular mode, no DMA request is served after the last
data transfer (once the number of single data to transfer reaches zero). The DMA channel
must be disabled in order to reload a new number of data items into the DMA_CNDTRX
register.

If the channel x is disabled, the DMA registers are not reset. The DMA channel registers
(DMA_CCRx, DMA_CPARx and DMA_CMARX) retain the initial values programmed during
the channel configuration phase.

In circular mode, after the last data transfer, the DMA_CNDTRX register is automatically
reloaded with the initially programmed value. The current internal address registers are
reloaded with the base address values from the DMA_CPARx and DMA_CMARX registers.

RMO0091 Rev 10 197/1017

Direct memory access controller (DMA) RM0091

Note:

198/1017

Channel configuration procedure

The following sequence is needed to configure a DMA channel x:

1. Set the peripheral register address in the DMA_CPARX register.
The data is moved from/to this address to/from the memory after the peripheral event,
or after the channel is enabled in memory-to-memory mode.

2. Set the memory address in the DMA_CMARKX register.
The data is written to/read from the memory after the peripheral event or after the
channel is enabled in memory-to-memory mode.

3. Configure the total number of data to transfer in the DMA_CNDTRX register.
After each data transfer, this value is decremented.

4. Configure the parameters listed below in the DMA_CCRX register:

— the channel priority

— the data transfer direction

— the circular mode

— the peripheral and memory incremented mode

— the peripheral and memory data size

— the interrupt enable at half and/or full transfer and/or transfer error
5. Activate the channel by setting the EN bit in the DMA_CCRX register.

For code example refer to the Appendix Section A.5.1: DMA channel configuration
sequence code example.

A channel, as soon as enabled, may serve any DMA request from the peripheral connected
to this channel, or may start a memory-to-memory block transfer.

The two last steps of the channel configuration procedure may be merged into a single
access to the DMA _CCRXx register, to configure and enable the channel.

Channel state and disabling a channel

A channel x in active state is an enabled channel (read DMA_CCRx.EN = 1). An active
channel x is a channel that must have been enabled by the software (DMA_CCRXx.EN set
to 1) and afterwards with no occurred transfer error (DMA_ISR.TEIFx = 0). In case there is a
transfer error, the channel is automatically disabled by hardware (DMA_CCRx.EN = 0).
The three following use cases may happen:
e Suspend and resume a channel

This corresponds to the two following actions:

— An active channel is disabled by software (writing DMA_CCRx.EN = 0 whereas
DMA_CCRx.EN = 1).

— The software enables the channel again (DMA_CCRXx.EN set to 1) without
reconfiguring the other channel registers (such as DMA_CNDTRx, DMA_CPARX
and DMA_CMARKX).

This case is not supported by the DMA hardware, that does not guarantee that the
remaining data transfers are performed correctly.

e Stop and abort a channel

If the application does not need any more the channel, this active channel can be
disabled by software. The channel is stopped and aborted but the DMA_CNDTRx

RMO0091 Rev 10 ‘Yl

RM0091

Direct memory access controller (DMA)

Note:

Note:

3

register content may not correctly reflect the remaining data transfers versus the
aborted source and destination buffer/register.

. Abort and restart a channel

This corresponds to the software sequence: disable an active channel, then
reconfigure the channel and enable it again.

This is supported by the hardware if the following conditions are met:

— The application guarantees that, when the software is disabling the channel, a
DMA data transfer is not occurring at the same time over its master port. For
example, the application can first disable the peripheral in DMA mode, in order to
ensure that there is no pending hardware DMA request from this peripheral.

— The software must operate separated write accesses to the same DMA_CCRXx
register: First disable the channel. Second reconfigure the channel for a next block
transfer including the DMA_CCRXx if a configuration change is needed. There are
read-only DMA_CCRXx register fields when DMA_CCRx.EN=1. Finally enable
again the channel.

When a channel transfer error occurs, the EN bit of the DMA_CCRXx register is cleared by
hardware. This EN bit can not be set again by software to re-activate the channel x, until the
TEIFx bit of the DMA_ISR register is set.

Circular mode (in memory-to-peripheral/peripheral-to-memory transfers)

The circular mode is available to handle circular buffers and continuous data flows (such as
ADC scan mode). This feature is enabled using the CIRC bit in the DMA_CCRX register.

The circular mode must not be used in memory-to-memory mode. Before enabling a
channel in circular mode (CIRC = 1), the software must clear the MEM2MEM bit of the
DMA _CCRXx register. When the circular mode is activated, the amount of data to transfer is
automatically reloaded with the initial value programmed during the channel configuration
phase, and the DMA requests continue to be served.

In order to stop a circular transfer, the software needs to stop the peripheral from generating
DMA requests (such as quit the ADC scan mode), before disabling the DMA channel.

The software must explicitly program the DMA_CNDTRXx value before starting/enabling a
transfer, and after having stopped a circular transfer.

Memory-to-memory mode

The DMA channels may operate without being triggered by a request from a peripheral. This
mode is called memory-to-memory mode, and is initiated by software.

If the MEM2MEM bit in the DMA_CCRX register is set, the channel, if enabled, initiates
transfers. The transfer stops once the DMA_CNDTRXx register reaches zero.

The memory-to-memory mode must not be used in circular mode. Before enabling a
channel in memory-to-memory mode (MEM2MEM = 1), the software must clear the CIRC
bit of the DMA_CCRXx register.

RMO0091 Rev 10 199/1017

Direct memory access controller (DMA) RM0091

Peripheral-to-peripheral mode

Any DMA channel can operate in peripheral-to-peripheral mode:
e when the hardware request from a peripheral is selected to trigger the DMA channel

This peripheral is the DMA initiator and paces the data transfer from/to this peripheral
to/from a register belonging to another memory-mapped peripheral (this one being not
configured in DMA mode).

e when no peripheral request is selected and connected to the DMA channel

The software configures a register-to-register transfer by setting the MEM2MEM bit of
the DMA_CCRXx register.

Programming transfer direction, assigning source/destination

The value of the DIR bit of the DMA_CCRXx register sets the direction of the transfer, and
consequently, it identifies the source and the destination, regardless the source/destination
type (peripheral or memory):
e DIR =1 defines typically a memory-to-peripheral transfer. More generally, if DIR = 1:
— The source attributes are defined by the DMA_MARKX register, the MSIZE[1:0]
field and MINC bit of the DMA_CCRXx register.
Regardless of their usual naming, these ‘memory’ register, field and bit are used to
define the source peripheral in peripheral-to-peripheral mode.
— The destination attributes are defined by the DMA_PARX register, the PSIZE[1:0]
field and PINC bit of the DMA_CCRX register.
Regardless of their usual naming, these ‘peripheral’ register, field and bit are used
to define the destination memory in memory-to-memory mode.
e DIR = 0 defines typically a peripheral-to-memory transfer. More generally, if DIR = O:
— The source attributes are defined by the DMA_PARX register, the PSIZE[1:0] field
and PINC bit of the DMA_CCRXx register.
Regardless of their usual naming, these ‘peripheral’ register, field and bit are used
to define the source memory in memory-to-memory mode
— The destination attributes are defined by the DMA_MARX register, the
MSIZE[1:0] field and MINC bit of the DMA_CCRXx register.
Regardless of their usual naming, these ‘memory’ register, field and bit are used to
define the destination peripheral in peripheral-to-peripheral mode.

10.4.5 DMA data width, alignment and endianness

When PSIZE[1:0] and MSIZE[1:0] are not equal, the DMA controller performs some data
alignments as described in the table below.

3

200/1017 RMO0091 Rev 10

RM0091

Direct memory access controller (DMA)

Table 33. Programmable data width and endian behavior (when PINC = MINC = 1)

Source | Destinat .
“':iz;th loqgtohrt Number | Source content: Dzztr:rt‘::t?n
MSIZE | (Psize | Ofdata | address/data address / data
i i itemsto | (DMA_CMARKX if DMA transfers i
! _ transfer DIR =1, else (DMA_CPARx if
DIR=1, | DIR=1, (NDT) DMA Cl,’ARx) DIR =1, else
else else - DMA_CMARX)
PSIZE) | MSIZE)
@O0x0 /B0 1: read BO[7:0] @0x0 then write BO[7:0] @0x0 @O0x0 /B0
8 8 4 @O0x1/B1 2: read B1[7:0] @0x1 then write B1[7:0] @0x1 @O0x1/B1
@0x2 /B2 3: read B2[7:0] @0x2 then write B2[7:0] @0x2 @0x2 /B2
@O0x3 /B3 4: read B3[7:0] @0x3 then write B3[7:0] @0x3 @O0x3 /B3
@0x0 /B0 1: read BO[7:0] @0xO0 then write 00B0[15:0] @0x0 @0x0 / 00BO
8 16 4 @O0x1/B1 2: read B1[7:0] @0x1 then write 00B1[15:0] @0x2 @O0x2 / 00B1
@O0x2 /B2 3: read B2[7:0] @0x2 then write 00B2[15:0] @0x4 @O0x4 / 00B2
@0x3 /B3 4: read B3[7:0] @0x3 then write 00B3[15:0] @0x6 @0x6 / 00B3
@O0x0 /B0 1: read B0[7:0] @0x0 then write 000000B0[31:0] @0x0 @0x0 / 00000080
8 32 4 @O0x1/B1 2: read B1[7:0] @0x1 then write 000000B1[31:0] @0x4 @0x4 / 000000B1
@0x2 /B2 3: read B2[7:0] @0x2 then write 000000B2[31:0] @0x8 @0x8 / 000000B2
@0x3 /B3 4: read B3[7:0] @0x3 then write 000000B3[31:0] @0xC @O0xC / 000000B3
@0x0/B1BO 1: read B1B0[15:0] @0x0 then write BO[7:0] @0x0 @0x0 /B0
16 8 4 @O0x2 / B3B2 2: read B3B2[15:0] @0x2 then write B2[7:0] @0x1 @O0x1/B2
@O0x4 / B5B4 3: read B5B4[15:0] @0x4 then write B4[7:0] @0x2 @O0x2 /B4
@0x6 / B7B6 4: read B7B6[15:0] @0x6 then write B6[7:0] @0x3 @0x3 / B6
@O0x0/B1B0O 1: read B1B0[15:0] @0x0 then write B1B0[15:0] @0x0 @0x0 / B1BO
16 16 4 @0x2 / B3B2 2: read B3B2[15:0] @0x2 then write B3B2[15:0] @0x2 @0x2 / B3B2
@O0x4 / B5B4 3: read B5B4[15:0] @0x4 then write B5B4[15:0] @0x4 @O0x4 / B5B4
@O0x6 / B7B6 4: read B7B6[15:0] @0x6 then write B7B6[15:0] @0x6 @0x6 / B7B6
@0x0/B1BO 1: read B1B0[15:0] @0x0 then write 0000B1B0[31:0] @0x0 @0x0 / 0000B1BO
16 32 4 @0x2 / B3B2 2: read B3B2[15:0] @0x2 then write 0000B3B2[31:0] @0x4 @0x4 / 0000B3B2
@0x4 / B5B4 3: read B5B4[15:0] @0x4 then write 0000B5B4[31:0] @0x8 @0x8 / 0000B5B4
@0x6 / B7B6 4: read B7B6[15:0] @0x6 then write 0000B7B6[31:0] @0xC @O0xC / 0000B7B6
@O0x0/B3B2B1B0 | 1: read B3B2B1B0[31:0] @0x0 then write BO[7:0] @0x0 @0x0 /B0
32 8 4 @O0x4 / B7B6B5B4 | 2: read B7B6B5B4[31:0] @0x4 then write B4[7:0] @0x1 @O0x1/B4
@0x8 / BBBAB9B8 | 3: read BBBAB9B8[31:0] @0x8 then write B8[7:0] @0x2 @0x2 / B8
@OxC / BFBEBDBC | 4: read BFBEBDBC[31:0] @0xC then write BC[7:0] @0x3 @O0x3/BC
@0x0/B3B2B1B0 | 1: read B3B2B1B0[31:0] @0x0 then write B1B0[15:0] @0x0 @0x0 / B1BO
32 16 4 @O0x4 / B7B6B5B4 | 2: read B7B6B5B4[31:0] @0x4 then write B5B4[15:0] @0x2 @0x2 / B5B4
@0x8 / BBBAB9B8 | 3: read BBBAB9B8[31:0] @0x8 then write BOB8[15:0] @0x4 @0x4 / BO9B8
@O0xC / BFBEBDBC | 4: read BFBEBDBC[31:0] @0xC then write BDBC[15:0] @0x6 @O0x6 / BDBC
@O0x0/B3B2B1B0 | 1: read B3B2B1B0[31:0] @0x0 then write B3B2B1B0[31:0] @0x0 @0x0 / B3B2B1B0
32 32 4 @O0x4 / B7B6B5B4 | 2: read B7B6B5B4[31:0] @0x4 then write B7B6B5B4[31:0] @0x4 @0x4 / B7B6B5B4
@0x8 / BBBAB9B8 | 3: read BBBAB9B8[31:0] @0x8 then write BBBABIB8[31:0] @0x8 | @0x8 / BBBAB9B8
@O0xC / BFBEBDBC | 4: read BFBEBDBC[31:0] @0xC then write BFBEBDBC[31:0] @0xC | @0xC / BFBEBDBC

3

Addressing AHB peripherals not supporting byte/half-word write transfers

When the DMA controller initiates an AHB byte or half-word write transfer, the data are
duplicated on the unused lanes of the AHB master 32-bit data bus (HWDATA[31:0]).

When the AHB slave peripheral does not support byte or half-word write transfers and does
not generate any error, the DMA controller writes the 32 HWDATA bits as shown in the two
examples below:

To write the half-word 0XxABCD, the DMA controller sets the HWDATA bus to
0xABCDABCD with a half-word data size (HSIZE = HalfWord in AHB master bus).

To write the byte 0xAB, the DMA controller sets the HWDATA bus to OxABABABAB
with a byte data size (HSIZE = Byte in the AHB master bus).

RMO0091 Rev 10

201/1017

Direct memory access controller (DMA) RM0091

Assuming the AHB/APB bridge is an AHB 32-bit slave peripheral that does not take into
account the HSIZE data, any AHB byte or half-word transfer is changed into a 32-bit APB
transfer as described below:

e An AHB byte write transfer of 0xB0 to one of the 0x0, 0x1, 0x2 or 0x3 addresses, is
converted to an APB word write transfer of 0xBOBOBOBO to the 0x0 address.

e An AHB half-word write transfer of 0xB1B0 to the 0x0 or 0x2 addresses, is converted to
an APB word write transfer of 0xB1B0OB1B0 to the 0x0 address.

10.4.6 DMA error management

A DMA transfer error is generated when reading from or writing to a reserved address
space. When a DMA transfer error occurs during a DMA read or write access, the faulty
channel x is automatically disabled through a hardware clear of its EN bit in the
corresponding DMA_CCRX register.

The TEIFx bit of the DMA_ISR register is set. An interrupt is then generated if the TEIE bit of
the DMA_CCRXx register is set.

The EN bit of the DMA_CCRX register can not be set again by software (channel x re-
activated) until the TEIFx bit of the DMA_ISR register is cleared (by setting the CTEIFx bit of
the DMA_IFCR register).

When the software is notified with a transfer error over a channel which involves a
peripheral, the software has first to stop this peripheral in DMA mode, in order to disable any
pending or future DMA request. Then software may normally reconfigure both DMA and the
peripheral in DMA mode for a new transfer.

10.5 DMA interrupts

An interrupt can be generated on a half transfer, transfer complete or transfer error for each
DMA channel x. Separate interrupt enable bits are available for flexibility.

Table 34. DMA interrupt requests

Interrupt
Interrupt request Interrupt event Event flag enable bit
Half transfer on channel x HTIFx HTIEx
Transfer complete on channel x TCIFx TCIEX
Channel x interrupt
Transfer error on channel x TEIFXx TEIEx
Half transfer or transfer complete or transfer error on channel x GIFx -

10.6 DMA registers

Refer to Section 1.2 for a list of abbreviations used in register descriptions.

The DMA registers have to be accessed by words (32-bit).

3

202/1017 RMO0091 Rev 10

RMO0091 Direct memory access controller (DMA)
10.6.1 DMA interrupt status register (DMA_ISR)
Address offset: 0x00
Reset value: 0x0000 0000
The content of this register is linked to the DMA channels availability. See Section 10.3:
DMA implementation for more details.
Every status bit is cleared by hardware when the software sets the corresponding clear bit
or the corresponding global clear bit CGIFx, in the DMA_IFCR register.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TEIF7 | HTIF7 | TCIF7 | GIF7 | TEIF6 | HTIF6 | TCIF6 | GIF6 | TEIF5 | HTIF5 | TCIF5 | GIF5
r r r r r r r r r r r r
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
TEIF4 | HTIF4 | TCIF4 | GIF4 | TEIF3 | HTIF3 | TCIF3 | GIF3 | TEIF2 | HTIF2 | TCIF2 | GIF2 | TEIF1 | HTIF1 | TCIF1 | GIF1
r r r r r r r r r r r r r r r r
Bits 31:28 Reserved, must be kept at reset value.
Bit 27 TEIF7: transfer error (TE) flag for channel 7
0: no TE event
1: a TE event occurred
Bit 26 HTIF7: half transfer (HT) flag for channel 7
0: no HT event
1: a HT event occurred
Bit 25 TCIF7: transfer complete (TC) flag for channel 7
0: no TC event
1: a TC event occurred
Bit 24 GIF7: global interrupt flag for channel 7
0: no TE, HT or TC event
1:a TE, HT or TC event occurred
Bit 23 TEIF6: transfer error (TE) flag for channel 6
0: no TE event
1: a TE event occurred
Bit 22 HTIF6: half transfer (HT) flag for channel 6
0: no HT event
1: a HT event occurred
Bit 21 TCIF6: transfer complete (TC) flag for channel 6
0: no TC event
1: a TC event occurred
Bit 20 GIF6: global interrupt flag for channel 6
0: no TE, HT or TC event
1:a TE, HT or TC event occurred
Bit 19 TEIF5: transfer error (TE) flag for channel 5
0: no TE event
1: a TE event occurred
Kys RM0091 Rev 10 203/1017

Direct memory access controller (DMA)

RMO0091

Bit 18 HTIF5: half transfer (HT) flag for channel 5
0: no HT event
1: a HT event occurred

Bit 17 TCIF5: transfer complete (TC) flag for channel 5
0: no TC event
1: a TC event occurred

Bit 16 GIF5: global interrupt flag for channel 5
0: no TE, HT or TC event
1:a TE, HT or TC event occurred

Bit 15 TEIF4: transfer error (TE) flag for channel 4
0: no TE event
1: a TE event occurred

Bit 14 HTIF4: half transfer (HT) flag for channel 4
0: no HT event
1: a HT event occurred

Bit 13 TCIF4: transfer complete (TC) flag for channel 4
0: no TC event
1: a TC event occurred

Bit 12 GIF4: global interrupt flag for channel 4
0: no TE, HT or TC event
1: a TE, HT or TC event occurred

Bit 11 TEIF3: transfer error (TE) flag for channel 3
0: no TE event
1: a TE event occurred
Bit 10 HTIF3: half transfer (HT) flag for channel 3

0: no HT event
1: a HT event occurred

Bit 9 TCIF3: transfer complete (TC) flag for channel 3
0: no TC event
1: a TC event occurred

Bit 8 GIF3: global interrupt flag for channel 3
0: no TE, HT or TC event
1:a TE, HT or TC event occurred

Bit 7 TEIF2: transfer error (TE) flag for channel 2
0: no TE event
1: a TE event occurred

Bit 6 HTIF2: half transfer (HT) flag for channel 2
0: no HT event
1: a HT event occurred

Bit 5 TCIF2: transfer complete (TC) flag for channel 2
0: no TC event
1: a TC event occurred

Bit 4 GIF2: global interrupt flag for channel 2

0: no TE, HT or TC event
1: a TE, HT or TC event occurred

204/1017 RMO0091 Rev 10

3

RMO0091 Direct memory access controller (DMA)

Bit 3 TEIF1: transfer error (TE) flag for channel 1
0: no TE event
1: a TE event occurred
Bit 2 HTIF1: half transfer (HT) flag for channel 1
0: no HT event
1: a HT event occurred
Bit 1 TCIF1: transfer complete (TC) flag for channel 1
0: no TC event
1: a TC event occurred
Bit 0 GIF1: global interrupt flag for channel 1

0: no TE, HT or TC event
1:a TE, HT or TC event occurred

10.6.2 DMA interrupt flag clear register (DMA_IFCR)

Address offset: 0x04
Reset value: 0x0000 0000

The content of this register is linked to the DMA channels availability. See Section 10.3:
DMA implementation for more details.

Setting the global clear bit CGIFx of the channel x in this DMA_IFCR register, causes the
DMA hardware to clear the corresponding GIFx bit and any individual flag among TEIFx,
HTIFx, TCIFx, in the DMA_ISR register.

Setting any individual clear bit among CTEIFx, CHTIFx, CTCIFx in this DMA_IFCR register,
causes the DMA hardware to clear the corresponding individual flag and the global flag
GIFx in the DMA_ISR register, provided that none of the two other individual flags is set.

Writing O into any flag clear bit has no effect.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
i i i T £ rd s i ri 2 ri T
m [O 5] m = IS 5] m E O 5]
= T = = T = = I =
o)) o o o 3} o o o 3} o
w w w w w w w w w w w w
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
X 0 T h i X £ 2 o h h o e L L T
= T 2 Q = T 2 Q = T [~ Q = T =4 Q
3 o [3) o o)) o (3 o 3} o 3} o 3} o
w w w w w w w w w w w w w w w w

Bits 31:28 Reserved, must be kept at reset value.
Bit 27 CTEIF7: transfer error flag clear for channel 7
Bit 26 CHTIF7: half transfer flag clear for channel 7
Bit 25 CTCIF7: transfer complete flag clear for channel 7
Bit 24 CGIF7: global interrupt flag clear for channel 7
Bit 23 CTEIF6: transfer error flag clear for channel 6
Bit 22 CHTIF6: half transfer flag clear for channel 6

3

RMO0091 Rev 10 205/1017

Direct memory access controller (DMA) RM0091

Bit 21 CTCIF6: transfer complete flag clear for channel 6
Bit 20 CGIF6: global interrupt flag clear for channel 6
Bit 19 CTEIFS5: transfer error flag clear for channel 5
Bit 18 CHTIFS5: half transfer flag clear for channel 5
Bit 17 CTCIF5: transfer complete flag clear for channel 5
Bit 16 CGIF5: global interrupt flag clear for channel 5
Bit 15 CTEIF4: transfer error flag clear for channel 4
Bit 14 CHTIF4: half transfer flag clear for channel 4
Bit 13 CTCIF4: transfer complete flag clear for channel 4
Bit 12 CGIF4: global interrupt flag clear for channel 4
Bit 11 CTEIF3: transfer error flag clear for channel 3
Bit 10 CHTIF3: half transfer flag clear for channel 3
Bit 9 CTCIF3: transfer complete flag clear for channel 3
Bit 8 CGIF3: global interrupt flag clear for channel 3
Bit 7 CTEIF2: transfer error flag clear for channel 2
Bit 6 CHTIF2: half transfer flag clear for channel 2
Bit 5 CTCIF2: transfer complete flag clear for channel 2
Bit 4 CGIF2: global interrupt flag clear for channel 2
Bit 3 CTEIF1: transfer error flag clear for channel 1
Bit 2 CHTIF1: half transfer flag clear for channel 1
Bit 1 CTCIF1: transfer complete flag clear for channel 1

Bit 0 CGIF1: global interrupt flag clear for channel 1

10.6.3 DMA channel x configuration register (DMA_CCRXx)

Address offset: 0x08 + 0x14 * (x- 1), (x =110 7)
Reset value: 0x0000 0000

The address offsets of these registers are linked to the DMA channels availability. See
Section 10.3: DMA implementation for more details.

The register fields/bits MEM2MEM, PL[1:0], MSIZE[1:0], PSIZE[1:0], MINC, PINC, and DIR
are read-only when EN = 1.

The states of MEM2MEM and CIRC bits must not be both high at the same time.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

,\|<|/|I?5'\|/\I/|2 PL[1:0] MSIZE[1:0] PSIZE[1:0] MINC | PINC | CIRC DIR TEIE HTIE TCIE EN

w w w w w w w w w w w w w w w

3

206/1017 RMO0091 Rev 10

RM0091

Direct memory access controller (DMA)

Bits 31:15
Bit 14

Bits 13:12

Bits 11:10

Reserved, must be kept at reset value.

MEM2MEM: memory-to-memory mode
0: disabled
1: enabled
Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

PL[1:0]: priority level
00: low
01: medium
10: high
11: very high
Note: this field is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

MSIZE[1:0]: memory size
Defines the data size of each DMA transfer to the identified memory.
In memory-to-memory mode, this field identifies the memory source if DIR = 1 and the
memory destination if DIR = 0.
In peripheral-to-peripheral mode, this field identifies the peripheral source if DIR = 1 and the
peripheral destination if DIR = 0.
00: 8 bits
01: 16 bits
10: 32 bits
11: reserved
Note: this field is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

Bits 9:8 PSIZE[1:0]: peripheral size

3

Defines the data size of each DMA transfer to the identified peripheral.
In memory-to-memory mode, this field identifies the memory destination if DIR = 1 and the
memory source if DIR = 0.
In peripheral-to-peripheral mode, this field identifies the peripheral destination if DIR = 1 and
the peripheral source if DIR = 0.
00: 8 bits
01: 16 bits
10: 32 bits
11: reserved
Note: this field is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

RMO0091 Rev 10 207/1017

Direct memory access controller (DMA) RM0091

Bit 7 MINC: memory increment mode
Defines the increment mode for each DMA transfer to the identified memory.
In memory-to-memory mode, this field identifies the memory source if DIR = 1 and the
memory destination if DIR = 0.
In peripheral-to-peripheral mode, this field identifies the peripheral source if DIR = 1 and the
peripheral destination if DIR = 0.
0: disabled
1: enabled
Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

Bit 6 PINC: peripheral increment mode
Defines the increment mode for each DMA transfer to the identified peripheral.
n memory-to-memory mode, this field identifies the memory destination if DIR = 1 and the
memory source if DIR = 0.
In peripheral-to-peripheral mode, this field identifies the peripheral destination if DIR = 1 and
the peripheral source if DIR = 0.
0: disabled
1: enabled
Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

Bit 5 CIRC: circular mode
0: disabled
1: enabled
Note: this bit is set and cleared by software.

It must not be written when the channel is enabled (EN = 1).
It is not read-only when the channel is enabled (EN = 1).

Bit 4 DIR: data transfer direction
This bit must be set only in memory-to-peripheral and peripheral-to-memory modes.
0: read from peripheral
— Source attributes are defined by PSIZE and PINC, plus the DMA_CPARX register.
This is still valid in a memory-to-memory mode.
— Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARX
register. This is still valid in a peripheral-to-peripheral mode.
1: read from memory
— Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARXx
register. This is still valid in a memory-to-memory mode.
— Source attributes are defined by MSIZE and MINC, plus the DMA_CMARKX register.
This is still valid in a peripheral-to-peripheral mode.
Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

Bit 3 TEIE: transfer error interrupt enable
0: disabled
1: enabled
Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is not read-only when the channel is enabled (EN = 1).

3

208/1017 RMO0091 Rev 10

RM0091

Direct memory access controller (DMA)

Bit 2 HTIE: half transfer interrupt enable
0: disabled
1: enabled
Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is not read-only when the channel is enabled (EN = 1).

Bit 1 TCIE: transfer complete interrupt enable
0: disabled
1: enabled
Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is not read-only when the channel is enabled (EN = 1).

Bit 0 EN: channel enable

When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again
by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by
setting the CTEIFx bit of the DMA_IFCR register).

0: disabled

1: enabled

Note: this bit is set and cleared by software.

10.6.4 DMA channel x number of data to transfer register (DMA_CNDTRX)

Address offset: 0x0C + 0x14 * (x - 1), (x =110 7)
Reset value: 0x0000 0000
The address offsets of these registers are linked to the DMA channels availability. See
Section 10.3: DMA implementation for more details.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

NDT[15:0]

3

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 NDT[15:0]: number of data to transfer (0 to 216 1)
This field is updated by hardware when the channel is enabled:
- It is decremented after each single DMA ‘read followed by write’ transfer, indicating
the remaining amount of data items to transfer.
- It is kept at zero when the programmed amount of data to transfer is reached, if the
channel is not in circular mode (CIRC = 0 in the DMA_CCRXx register).
- It is reloaded automatically by the previously programmed value, when the transfer
is complete, if the channel is in circular mode (CIRC = 1).
If this field is zero, no transfer can be served whatever the channel status (enabled or not).
Note: this field is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

RMO0091 Rev 10 209/1017

Direct memory access controller (DMA)

RMO0091

10.6.5 DMA channel x peripheral address register (DMA_CPARX)
Address offset: 0x10 + 0x14 * (x- 1), (x =110 7)
Reset value: 0x0000 0000
The address offsets of these registers are linked to the DMA channels availability. See
Section 10.3: DMA implementation for more details.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PA[31:16]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA[15:0]
Bits 31:0 PA[31:0]: peripheral address
It contains the base address of the peripheral data register from/to which the data is
read/written.
When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned
to a half-word address.
When PSIZE = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically
aligned to a word address.
In memory-to-memory mode, this register identifies the memory destination address if
DIR = 1 and the memory source address if DIR = 0.
In peripheral-to-peripheral mode, this register identifies the peripheral destination address
DIR = 1 and the peripheral source address if DIR = 0.
Note: this register is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is not read-only when the channel is enabled (EN = 1).
10.6.6 DMA channel x memory address register (DMA_CMARX)
Address offset: 0x14 + 0x14 * (x- 1), (x =110 7)
Reset value: 0x0000 0000
The address offsets of these registers are linked to the DMA channels availability. See
Section 10.3: DMA implementation for more details.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MA[31:16]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MA[15:0]
210/1017 RM0091 Rev 10 1S7]

RMO0091 Direct memory access controller (DMA)

Bits 31:0 MA[31:0]: peripheral address

It contains the base address of the memory from/to which the data is read/written.
When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned
to a half-word address.

When MSIZE = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically
aligned to a word address.
In memory-to-memory mode, this register identifies the memory source address if DIR = 1
and the memory destination address if DIR = 0.
In peripheral-to-peripheral mode, this register identifies the peripheral source address
DIR = 1 and the peripheral destination address if DIR = 0.
Note: this register is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is not read-only when the channel is enabled (EN = 1).

3

RMO0091 Rev 10 211/1017

Direct memory access controller (DMA) RM0091

10.6.7 DMA channel selection register (DMA_CSELR)
Address offset: 0xA8
Reset value: 0x0000 0000
This register is present only on STM32F09xx devices.

This register is used to manage the mapping of DMA channels as detailed in Section 10.3.2:

DMA request mapping.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
C7S[3:0] C6S[3:0] C5S[3:0]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C4S[3:0] C3s[3:0] C2S[3:0] C1S[3:0]

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:24 C7S[3:0]: DMA channel 7 selection
Details available in Section 10.3.2: DMA request mapping

Bits 23:20 C6S[3:0]: DMA channel 6 selection
Details available in Section 10.3.2: DMA request mapping

Bits 19:16 C5S[3:0]: DMA channel 5 selection
Details available in Section 10.3.2: DMA request mapping

Bits 15:12 C4S[3:0]: DMA channel 4 selection
Details available in Section 10.3.2: DMA request mapping

Bits 11:8 C3S[3:0]: DMA channel 3 selection
Details available in Section 10.3.2: DMA request mapping

Bits 7:4 C2S[3:0]: DMA channel 2 selection
Details available in Section 10.3.2: DMA request mapping

Bits 3:0 C1S[3:0]: DMA channel 1 selection
Details available in Section 10.3.2: DMA request mapping

10.6.8 DMA register map

The table below gives the DMA register map and reset values.

Table 35. DMA register map and reset values

Offset Register |58 |QIQNIQIRIRXNSIRICIEI=|CRTII2INIE|S|o|o|~|o|v|t|m|n|ro
DMA ISR e pn i b pr pra i i b) pr P i i e e e o e o o

0x000 - HIZRolEE IR o HEIR|oEIEIR|oEIEIR|IoEIEIR|OHIEIR|O
Reset value olofofofo]ofofo]ofofo]ofolo]o]o|o]ofolo][ofo|o]ofo|o]o]0

ol ol o vl i vl i vl i I i P v G 0 il g o g e o

oxos | DMAIFCR WEC|g|E|EIS|g|E|EIS|a|E|EIS|a|E|EIS|a|E|E|S|a|E|EIC|g
X olo|o|Qlo|T|o|Clo|T|o|Clo|o|o|Clo|o|o|Clo|Tlo|C|o|o|o]|©
Reset value olofofofo][ofofo]ofofo][ofofo][ofo[o][ofolof[ofo[o]ofo|o]o]0
212/1017 RM0091 Rev 10 ‘7]

RMO0091 Direct memory access controller (DMA)
Table 35. DMA register map and reset values (continued)
Offset Register |5|SIRIXJKNIRRIQXRISIRSRE|RRFZICCFIR|o|w|~|o|w|<|o|N|o
= _ | & | &
DMA_CCR1 23| T|828|x|yuul
0x008 - S g | Y| N |E|E|S|o|F| TR
s s | o
Reset value oloJofofo]oJo]o]o]o]o]o]o]o]o
DMA_CNDTR1 NDTR[15:0]
0x00C
Reset value ofoJoJoJoJoJoJoJoJoJoJo]o]o]o]o
DMA_CPAR1 PA[31:0]
0x010
Resetvalue [0[o[o[o[ofofofo]o]o]o]o]oJoJoJoJoJoJoJoJo]Jo]Jo]Jofo]Jo[o[o]o]o]o]0
DMA_CMAR1 MA[31:0]
0x014
Resetvalue [0JoJoJofofoJoJoJoJo]ofo]JoJoJo]o]o]o]JoJoJo]o]o]o]JoJoJo]o]o]o]o]o
0x018 Reserved
HENEEEE
DMA_CCR2 = 2| T rREICIEIEIEGIE
0x01C - = F | NN |SIE|c|olF|E|R™
s s | o
Reset value oJoJofoJo[oJo[o[o[o[o]o]0]0]0
DMA_CNDTR2 NDTR[15:0]
0x020
Reset value olofofofoJoJo]o]ofo]o]oJo]o]o]0
DMA_CPAR2 PA[31:0]
0x024
Resetvalue [0[o[o[o[oJofofo]o]o]o]o]oJoJoJoJoJoJoJoJoJoJoJo oo ofo]o]o]o]0
DMA_CMAR2 MA[31:0]
0x028
Resetvalue [0[o[o[o[o]o[o]o]o]o]o]o]o]o]ofoJoJooo]o]o]o]ofo]o[o[o[o]o]0]0
0x02C Reserved
E =) 22 ololo
= 2 = 5 o |W|wiw
oxo30 | DMA-CCR3 =l 7 ugJ g HHEEHEEEE
= = o
Reset value oJoJoJoJo[oJo[o[o[o[o]o]o]0]0
DMA_CNDTR3 NDTR[15:0]
0x034
Reset value oflofofoJoJoJo]o]o]o]JoJoJo]o]o]o
DMA_CPAR3 PA[31:0]
0x038
Resetvalue [0[o]o[ofofofofofo]o]o]o]oJoJoJoJoJoJoJoJo]Jo]Jo]Jo o o o]o]o]o]o]0
DMA_CMAR3 MA[31:0]
0x03C
Resetvalue [0[o[o[o[ofofofo]o]o]o]o]oJoJoJoJoJoJoJoJo]Jo]Jo]Jofo]Jo[o[o]o]o]o]0
0x040 Reserved
5 =) 22 ololo
= BT I o |w|w|w
oxoas | DMACCRS % = :Nj g HHEEHEEEE
s S | o
Reset value ofoJofJoJo[oJo[o[o[o[o]o]o]o0]0
DMA_CNDTR4 NDTR[15:0]
0x048
Reset value ojoJoJoJoJoJoJoJoJo[o[o[o]o]o]0
DMA_CPAR4 PA[31:0]
0x04C
Resetvalue [0]oJo]ofofofoJoJo]o]o]o]JoJoJo]o]o]o]JoJo]o]o]o]o]JoJo]o]o]o]o]o]o
DMA_CMAR4 MA[31:0]
0x050
Resetvalue [0[o]ofo[ofofofo]o]o]o]o]oJoJoJoJoJoJoJoJoJoJoJo oo oo o]o]o]o
0x054 Reserved
bl P = =
DMA_CCR5 Sl = | O | T |22g|zHEsz
0x058 - S F | Y| N |EEoaF|T|R™
s S | o
Reset value oloJofofo]oJo]o]o]o[o]o]o]o]o

S74

RMO0091 Rev 10 213/1017

Direct memory access controller (DMA)

RMO0091

Table 35. DMA register map and reset values (continued)

Offset Register |53 IQIQINKIQIRKXRNQIRCR(=IR2TREF|IR|e|w~o|v(xoN -0
DMA_CNDTR5 NDTR[15:0]
0x05C
Reset value oJoJoJoJoJoJoJoJoJo[o[o]o]o]o]0
DMA_CPAR5 PA[31:0]
0x060
Resetvalue [0JoJoJofofoJoJoJoJofofo]JoJoJo]o]o]o]JoJoJo]o]o]o]JoJoJo]o]o]o]o]o
DMA_CMAR5 MA[31:0]
0x064
Resetvalue [0[o]o[ofofofofofofo]o]o]oJoJoJoJoJoJoJoJo]Jo]Jo]Jo o o o]o]o]o]o]0
0x068 Reserved
=l _ 1&g =
DMA_CCR6 22T | T |228|x|yy Lz
0x06C - S| N | Y (E|E|S|o|F|E|R|
= = | a
Reset value oloJofofo]oJo]o]o]o]o]o]o]o]o
DMA_CNDTR6 NDTR[15:0]
0x070
Reset value ofoJoJoJoJoJoJoJoJoJoJo]o]o]o]o0
DMA_CPAR6 PA[31:0]
0x074
Resetvalue [0[o[o[o[o]o[o]o]o]o]o]ofo]o]ofoJoJooo]o]o]o]ofo]o[o[o[o]o]0]0
DMA_CMARS MA[31:0]
0x078
Resetvalue [0]oJo]ofofofJoJoJo]o]ofo]JoJoJo]o]o]o]JoJo]o]o]o]o]JoJo]o]o]o]o]o]o
0x07C Reserved
HENEEEE
DMA_CCR7 Sl 23| T|828|x|yuul
0x080 - EE g %EEGDEEBLU
s = | a
Reset value oloJofofo]oJo]o]o]o]o]o]o]o]o
DMA_CNDTR? NDTR[15:0]
0x084
Reset value ofoJoJoJoJoJoJoJoJoJoJo]o]o]o]o
DMA_CPAR7 PA[31:0]
0x088
Resetvalue [0[o[o[o[ofofofo]o]o]o]o]oJoJoJoJoJoJoJoJo]JoJo]Jofo]Jo[o[o]o]o]o]0
DMA_CMAR7 MA[31:0]
0x08C
Resetvalue [0JoJo]ofofoJoJoJo]o]ofo]JoJoJo]o]o]o]JoJoJo]o]o]o]JoJoJo]o]o]o]o]o
0x090 to Reserved
0x0A4
oxons | PMACSELR C78[3:0] | C6S[3:0] | C5S[3:0] | C4S[3:0] | C3S[3:0] | C25[3:0] | C1S[3:0]
Reset value oJloJoJofofo]JoJolo]o]o]o]oJo]o]o]o]o]JoJo]o]o]o]o]o]o]o]o

214/1017

Refer to Section 2.2 for the register boundary addresses.

3

RMO0091 Rev 10

RM0091 Interrupts and events
11 Interrupts and events
11.1 Nested vectored interrupt controller (NVIC)
1.11 NVIC main features
e 32 maskable interrupt channels (not including the sixteen Cortex®-M0 interrupt lines)
e 4 programmable priority levels (2 bits of interrupt priority are used)
e Low-latency exception and interrupt handling
e Power management control
e Implementation of System control registers
The NVIC and the processor core interface are closely coupled, which enables low latency
interrupt processing and efficient processing of late arriving interrupts.
All interrupts including the core exceptions are managed by the NVIC. For more information
on exceptions and NVIC programming, refer to the PM0215 programming manual.
For code example refer to the Appendix section A.6.71: NVIC initialization example.
11.1.2 SysTick calibration value register
The SysTick calibration value is set to 6000, which gives a reference time base of 1 ms with
the SysTick clock set to 6 MHz (max fyc k / 8).
1.1.3 Interrupt and exception vectors
Table 36 is the vector table for STM32F0xx devices. Consider peripheral availability on your
device.
Table 36. Vector table
§| & T f
% o y_p e.o Acronym Description Address
3 = | priority
o o
- - - - Reserved 0x0000 0000
- - Fixed |Reset Reset 0x0000 0004
Non maskable interrupt. The RCC clock security
- -2 Fixed |NMI system (CSS) and the RAM parity check are linked to | 0x0000 0008
the NMI vector.
- -1 Fixed |HardFault All classes of fault 0x0000 000C
- 3 | Settable | SVCall System service call via SWI instruction 0x0000 002C
- 5 | Settable | PendSV Pendable request for system service 0x0000 0038
- 6 | Settable | SysTick System tick timer 0x0000 003C
0 7 | Settable | WWDG Window watchdog interrupt 0x0000 0040
PVD and Vpp o2 supply comparator interrupt
1 8 | Settable | PVD_VDDIO2 (combined EXTI lines 16 and 31) 0x0000 0044
2 9 | Settable |RTC RTC interrupts (combined EXTI lines 17, 19 and 20) | 0x0000 0048

RMO0091 Rev 10

215/1017

Interrupts and events

RM0091

Table 36. Vector table (continued)

s >
5‘% ’E: Ty_p e.of Acronym Description Address
2 E priority
3 | 10 | Settable | FLASH Flash global interrupt 0x0000 004C
4 11 | Settable | RCC_CRS RCC and CRS global interrupts 0x0000 0050
5 12 | Settable | EXTIO_1 EXTI Line[1:0] interrupts 0x0000 0054
6 13 | Settable |EXTI2_3 EXTI Line[3:2] interrupts 0x0000 0058
7 | 14 | Settable |EXTI4_15 EXTI Line[15:4] interrupts 0x0000 005C
8 | 15 | Settable | TSC Touch sensing interrupt 0x0000 0060
9 | 16 | Settable | DMA_CH1 DMA channel 1 interrupt 0x0000 0064
10 | 17 | Setle | "0 2 | owan onanmel 1 and 2 merps
11| | setale | a5 | DM crannel 3,4 na S merups
12 | 19 | Settable | ADC_COMP @ﬁ?;;%ﬁr?e'\gz ;”;Z“zpztj (ADC interrupt combined | . 5441 9970
13 | 20 | Settable mn(;__ggl\lj_up_ TIM1 break, update, trigger and commutation interrupt | 0x0000 0074
14 | 21 | Settable | TIM1_CC TIM1 capture compare interrupt 0x0000 0078
15 | 22 | Settable | TIM2 TIM2 global interrupt 0x0000 007C
16 | 23 | Settable | TIM3 TIM3 global interrupt 0x0000 0080
17 | 24 | Settable | TIM6_DAC TIM6 global interrupt and DAC underrun interrupt 0x0000 0084
18 | 25 | Settable | TIM7 TIM7 global interrupt 0x0000 0088
19 | 26 | Settable | TIM14 TIM14 global interrupt 0x0000 008C
20 | 27 | Settable | TIM15 TIM15 global interrupt 0x0000 0090
21 | 28 | Settable | TIM16 TIM16 global interrupt 0x0000 0094
22 | 29 | Settable | TIM17 TIM17 global interrupt 0x0000 0098
23 | 30 | Settable |12C1 12C1 global interrupt (combined with EXTI line 23) 0x0000 009C
24 | 31 | Settable |12C2 12C2 global interrupt 0x0000 00AO0
25 | 32 | Settable | SPI1 SPI1 global interrupt 0x0000 00A4
26 | 33 | Settable | SPI2 SPI2 global interrupt 0x0000 00A8
27 | 34 | Settable | USART1 USART1 global interrupt (combined with EXTI line 25) | 0x0000 00AC
28 | 35 | Settable | USART2 USART?2 global interrupt (combined with EXTI line 26) | 0x0000 00BO
USART3, USART4, USART5, USART6, USART?,
29 | 36 | Settable |USART3 4 5 6_7_8 | USARTS global interrupts 0x0000 00B4
(combined with EXTI line 28)
30 | 37 | Settable | CEC_CAN ﬁ)nliczz;;\d CAN global interrupts (combined with EXTI 0x0000 00B8
31 | 38 | Settable |USB USB global interrupt (combined with EXTI line 18) 0x0000 00BC
216/1017 RMO0091 Rev 10 ‘,_l

RM0091

Interrupts and events

11.2

11.2.1

3

Extended interrupts and events controller (EXTI)

The extended interrupts and events controller (EXTI) manages the external and internal
asynchronous events/interrupts and generates the event request to the CPU/Interrupt
controller and a wake-up request to the Power manager.

The EXTI allows the management of up to 32 external/internal event line (23 external event
lines and 9 internal event lines).

The active edge of each external interrupt line can be chosen independently, whilst for
internal interrupt the active edge is always the rising one. An interrupt could be left pending:
in case of an external one, a status register is instantiated and indicates the source of the
interrupt; an event is always a simple pulse and it's used for triggering the core Wake-up
(e.g. Cortex-MO RXEV pin). For internal interrupts, the pending status is assured by the
generating IP, so no need for a specific flag. Each input line can be masked independently
for interrupt or event generation, in addition the internal lines are sampled only in STOP
mode. This controller allows also to emulate the (only) external events by software,
multiplexed with the corresponding hardware event line, by writing to a dedicated register.

Main features

The EXTI main features are the following:

e Supports generation of up to 32 event/interrupt requests

¢ Independent mask on each event/interrupt line

e Automatic disable of internal lines when system is not in STOP mode
e Independent trigger for external event/interrupt line

e Dedicated status bit for external interrupt line

e Emulation for all the external event requests

RMO0091 Rev 10 217/1017

Interrupts and events RM0091

11.2.2

11.2.3

11.2.4

218/1017

Block diagram

The extended interrupt/event block diagram is shown in Figure 23.

Figure 23. Extended interrupts and events controller (EXTI) block diagram

I APB bus |
PCLK —>‘ Peripheral interface ‘
Falling Rising Software :
trigger trigger interrupt Evenkt Interrllj(pt Pendlngt:]
selection selection event mgst mgst req_u?s
register register register register register register

Y

v Interrupts
External Edge detect D— 4 >
L/

»

events L[circuit _—l:>
Stop mode Rising
O E

Internal events detect
—>
Wakeup

MS19952V3

Events

Event management

The STM32FO0xx is able to handle external or internal events in order to wake up the core
(WFE). The wake-up event can be generated either by:

e enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the Cortex-MO System control register. When the MCU
resumes from WFE, the EXTI peripheral interrupt pending bit and the peripheral NVIC
IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be
cleared.

e or by configuring an external or internal EXT]I line in event mode. When the CPU
resumes from WFE, it is not necessary to clear the peripheral interrupt pending bit or
the NVIC IRQ channel pending bit as the pending bit corresponding to the event line is
not set.

Functional description

For the external interrupt lines, to generate the interrupt, the interrupt line should be
configured and enabled. This is done by programming the two trigger registers with the
desired edge detection and by enabling the interrupt request by writing a ‘1’ to the
corresponding bit in the interrupt mask register. When the selected edge occurs on the
external interrupt line, an interrupt request is generated. The pending bit corresponding to
the interrupt line is also set. This request is reset by writing a ‘1’ in the pending register.

RMO0091 Rev 10 ‘Yl

RM0091

Interrupts and events

Note:

3

For the internal interrupt lines, the active edge is always the rising edge, the interrupt is
enabled by default in the interrupt mask register and there is no corresponding pending bit
in the pending register.

To generate the event, the event line should be configured and enabled. This is done by
programming the two trigger registers with the desired edge detection and by enabling the
event request by writing a ‘1’ to the corresponding bit in the event mask register. When the
selected edge occurs on the event line, an event pulse is generated. The pending bit
corresponding to the event line is not set.

For the external lines, an interrupt/event request can also be generated by software by
writing a ‘1’ in the software interrupt/event register.

The interrupts or events associated to the internal lines can be triggered only when the
system is in STOP mode. If the system is still running, no interrupt/event is generated.

For code example refer to the Appendix section A.6.2: External interrupt selection code
example.

Hardware interrupt selection

To configure a line as interrupt source, use the following procedure:
e Configure the corresponding mask bit in the EXTI_IMR register.
e Configure the trigger selection bits of the interrupt line (EXTI_RTSR and EXTI_FTSR)

e Configure the enable and mask bits that control the NVIC IRQ channel mapped to the
EXTI so that an interrupt coming from one of the EXTI line can be correctly
acknowledged.

Hardware event selection

To configure a line as event source, use the following procedure:
e Configure the corresponding mask bit in the EXTI_EMR register.
e Configure the Trigger Selection bits of the Event line (EXTI_RTSR and EXTI_FTSR)

Software interrupt/event selection

Any of the external lines can be configured as software interrupt/event lines. The following is
the procedure to generate a software interrupt.
e Configure the corresponding mask bit (EXTI_IMR, EXTI_EMR)

e Set the required bit of the software interrupt register (EXTI_SWIER)

RMO0091 Rev 10 219/1017

Interrupts and events RM0091

11.2.5 External and internal interrupt/event line mapping

The GPIOs are connected to the 16 external interrupt/event lines in the following manner:

Figure 24. External interrupt/event GPIO mapping

EXTIO[3:0] bits in the SYSCFG_EXTICR1 register

PAQ O——»]
PBO C—— b} EXTIO
PCO O——»]
PDO C——»]
PE0 C——»]
PFO O——»

EXTI1[3:0] bits in the SYSCFG_EXTICR1 register

PA1 O—»
PB1 O——» EXTI1
PC1 O—»
PD1 O——»
PE1 O——»
PF1 O——

EXTI15[3:0] bits in the SYSCFG_EXTICR4 register

PA15 O——»
PB15 O——» EXTI15
PC15 O——»
PD15 O——»
PE15 O——»
PF15 O——»

MS19951V2

3

220/1017 RMO0091 Rev 10

RM0091

Interrupts and events

The remaining lines are connected as follow:

EXTI line 16 is connected to the PVD output

EXTI line 17 is connected to the RTC Alarm event

EXTI line 18 is connected to the internal USB wake-up event

EXTI line 19 is connected to the RTC Tamper and TimeStamp events

EXTI line 20 is connected to the RTC Wake-up event (available only on STM32F07x
and STM32F09x devices)

EXTI line 21 is connected to the Comparator 1 output

EXTI line 22 is connected to the Comparator 2 output

EXTI line 23 is connected to the internal 12C1 wake-up event
EXTI line 24 is reserved (internally held low)

EXTI line 25 is connected to the internal USART1 wake-up event

EXTI line 26 is connected to the internal USART2 wake-up event (available only on
STM32F07x and STM32F09x devices)

EXTI line 27 is connected to the internal CEC wake-up event

EXTI line 28 is connected to the internal USART3 wake-up event (available only on
STM32F09x devices)

EXTI line 29 is reserved (internally held low)
EXTI line 30 is reserved (internally held low)

EXTI line 31 is connected to the Vpp 0o supply comparator output (available only on
STM32F04x, STM32F07x and STM32F09x devices

Note: EXTI lines which are reserved or not used on some devices are considered as internal.
11.3 EXTI registers
Refer to Section 1.2 on page 42 for a list of abbreviations used in register descriptions.
The peripheral registers have to be accessed by words (32-bit).
11.3.1 Interrupt mask register (EXTI_IMR)
Address offset: 0x00
Reset value: OxOFF4 0000 (STM32F03x devices)
0x7FF4 0000 (STM32F04x devices)
0x0F94 0000 (STM32F05x devices)
0x7F84 0000 (STM32F07x and STM32F09x devices)
Note: The reset value for the internal lines is set to ‘1’ in order to enable the interrupt by default.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IM31 | IM30 | IM29 | IM28 | IM27 | IM26 | IM25 | IM24 | IM23 | IM22 | IM21 | IM20 | IM19 | IM18 | IM17 | IM16
w w w rw rw w w rw rw rw w rw rw rw w w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IM15 | IM14 | IM13 | IM12 | IM11 | IM10 | IM9 IM8 M7 | IM6 | IM5 | IM4 | IM3 | IM2 IM1 IMO
w w w rw rw w w w rw rw w rw rw rw w rw
‘7] RM0091 Rev 10 221/1017

Interrupts and events

RM0091

Bits 31:0 IMx: Interrupt Mask on line x (x = 31 to 0)

0: Interrupt request from Line x is masked
1: Interrupt request from Line x is not masked

11.3.2 Event mask register (EXTI_EMR)

Address offset: 0x04
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
EM31 | EM30 | EM29 | EM28 | EM27 | EM26 | EM25 | EM24 | EM23 | EM22 | EM21 | EM20 | EM19 | EM18 | EM17 | EM16
rw rw rw w w w rw w rw rw rw w w w rw rw
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EM15 | EM14 | EM13 | EM12 | EM11 | EM10 | EM9 | EM8 | EM7 | EM6 | EM5 | EM4 | EM3 | EM2 | EM1 | EMO
rw w w rw rw w rw w rw rw w rw rw w w rw

Bits 31:0 EMx: Event mask on line x (x = 31 to 0)
0: Event request from Line x is masked
1: Event request from Line x is not masked
11.3.3 Rising trigger selection register (EXTI_RTSR)
Address offset: 0x08
Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RT31 RT22 | RT21 | RT20 | RT19 | Res. | RT17 | RT16
rw rw w rw w w w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RT15 | RT14 | RT13 | RT12 | RT11 | RT10 | RT9 | RT8 | RT7 | RT6 | RT5 | RT4 | RT3 | RT2 | RT1 RTO
w w rw w w w w rw w w rw w rw w w rw

Bit 31 RT31: Rising trigger event configuration bit of line 31

0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line.

Bits 30:23 Reserved, must be kept at reset value.

Bits 22:19 RTx: Rising trigger event configuration bit of line x (x = 22 to 19)

0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line.

Bit 18 Reserved, must be kept at reset value.

Bits 17:0 RTx: Rising trigger event configuration bit of line x (x = 17 to 0)

0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line.

222/1017 RMO0091 Rev 10

3

RM0091 Interrupts and events

Note: The external wake-up lines are edge triggered. No glitches must be generated on these
lines. If a rising edge on an external interrupt line occurs during a write operation to the
EXTI_RTSR register, the pending bit is not set.

Rising and falling edge triggers can be set for the same interrupt line. In this case, both
generate a trigger condition.

1.3.4 Falling trigger selection register (EXTI_FTSR)

Address offset: 0x0C
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
FT31 FT22 | FT21 FT20 | FT19 Res. FT17 FT16
w w w w w w w
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

FT15 | FT14 | FT13 | FT12 | FT11 FT10 FT9 FT8 FT7 FT6 FT5 FT4 FT3 FT2 FT1 FTO

Bit 31 FT31: Falling trigger event configuration bit of line 31

0: Falling trigger disabled (for Event and Interrupt) for input line
1: Falling trigger enabled (for Event and Interrupt) for input line.

Bits 30:23 Reserved, must be kept at reset value.

Bits 22:19 FTx: Falling trigger event configuration bit of line x (x = 22 to 19)

0: Falling trigger disabled (for Event and Interrupt) for input line.
1: Falling trigger enabled (for Event and Interrupt) for input line.

Bit 18 Reserved, must be kept at reset value.

Bits 17:0 FTx: Falling trigger event configuration bit of line x (x = 17 to 0)

0: Falling trigger disabled (for Event and Interrupt) for input line.
1: Falling trigger enabled (for Event and Interrupt) for input line.

Note: The external wake-up lines are edge triggered. No glitches must be generated on these
lines. If a falling edge on an external interrupt line occurs during a write operation to the
EXTI_FTSR register, the pending bit is not set.

Rising and falling edge triggers can be set for the same interrupt line. In this case, both
generate a trigger condition.

11.3.5 Software interrupt event register (EXTI_SWIER)

Address offset: 0x10
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
SWiI31 SWiI22 | SWI21 | SWI20 | SWI19 SWI17 | SWI16
w w w w w w w
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

SWI15 | SWI14 | SWI13 | SWI12 | SWI11 | SWI10 | SWI9 | SWI8 | SWI7 | SWI6 | SWI5 | SWI4 | SWI3 | SWI2 | SWI1 SWI0

3

RMO0091 Rev 10 223/1017

Interrupts and events RM0091

Bit 31 SWI31: Software interrupt on line 31

If the interrupt is enabled on this line in the EXTI_IMR, writing a ‘1’ to this bit when it is at ‘0’
sets the corresponding pending bit in EXTI_PR resulting in an interrupt request generation.

This bit is cleared by clearing the corresponding bit of EXTI_PR (by writing a ‘1’ to the bit)
Bits 30:23 Reserved, must be kept at reset value.

Bits 22:19 SWiIx: Software interrupt on line x (x = 22 to 19)

If the interrupt is enabled on this line in the EXTI_IMR, writing a ‘1’ to this bit when it is at ‘0’
sets the corresponding pending bit in EXTI_PR resulting in an interrupt request generation.

This bit is cleared by clearing the corresponding bit of EXTI_PR (by writing a ‘1’ to the bit)
Bit 18 Reserved, must be kept at reset value.

Bits 17:0 SWIx: Software interrupt on line x (x = 17 to 0)

If the interrupt is enabled on this line in the EXTI_IMR, writing a ‘1’ to this bit when it is at ‘0’
sets the corresponding pending bit in EXTI_PR resulting in an interrupt request generation.

This bit is cleared by clearing the corresponding bit of EXTI_PR (by writing a ‘1’ to the bit).

11.3.6 Pending register (EXTI_PR)

Address offset: 0x14
Reset value: undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PIF31 PIF22 | PIF21 | PIF20 | PIF19 PIF17 | PIF16
rc_w1 rc wl | rc_wl | rc_wl | rc_wil rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIF15 | PIF14 | PIF13 | PIF12 | PIF11 | PIF10 | PIF9 | PIF8 | PIF7 | PIF6 | PIF5 | PIF4 | PIF3 | PIF2 | PIF1 | PIFO

rc wl [rcwl | rcw!l [rcwl | recwl | rc_wl | rc_wi rcwl | rcwl [rcwl |rcwl [rcwl | rcwl | rc_wl | rc_wil rc_w1

Bit 31 PIF31: Pending bit on line 31

0: no trigger request occurred
1: selected trigger request occurred

This bit is set when the selected edge event arrives on the external interrupt line. This bit is
cleared by writing a 1 to the bit.
Bits 30:23 Reserved, must be kept at reset value.

Bits 22:19 PIFx: Pending bit on line x (x = 22 to 19)

0: no trigger request occurred
1: selected trigger request occurred

This bit is set when the selected edge event arrives on the external interrupt line. This bit is
cleared by writing a 1 to the bit.
Bit 18 Reserved, must be kept at reset value.

Bits 17:0 PIFx: Pending bit on line x (x =17 to 0)
0: no trigger request occurred
1: selected trigger request occurred

This bit is set when the selected edge event arrives on the external interrupt line. This bit is
cleared by writing a 1 to the bit.

3

224/1017 RMO0091 Rev 10

RM0091 Interrupts and events

11.3.7 EXTI register map

The following table gives the EXTI register map and the reset values.

Table 37. External interrupt/event controller register map and reset values

Offset| Register TIQIQZINIQIQIIKRNSKSIRELIRII2YE|I2|o 0|~ 0|1t (0|0
EXTL_IMR IM[31:0]
0x00
Reset value o‘o‘o|o‘o‘o‘o‘o|o|o‘o‘o|o‘o|o‘o‘o|o‘o|o‘o‘o‘o‘o|o‘o‘o‘o‘o|o‘o‘o
EXTI_EMR EM[31:0]
0x04
Resetvalue |o0|o|o]ofofofolofofo]o]olo]o o‘o‘o|o‘o|o‘o‘o‘o‘o|o‘o‘o‘o‘o|o‘o‘o
EXT_RTSR |® SIN|NIRE RT[17:0]
0x08 - E Elelk|k|E '
Resetvalue |0 olololo]o 0‘0‘0|0‘0|0‘0‘0‘0‘0|0‘0‘0‘0‘0|0‘0‘0
~ ™M N |~ [|o
EXTLFTSR | SINISIS 2 FT[7:0]
0x0C L Lo | |w |
Resetvalue |0 olololo]o o‘0‘0|0‘o|o‘0‘0‘0‘0|0‘0‘0‘0‘0|0‘0‘0
® QINISIRI2
ot | EXTLSWEER |2 SIEEEEIE SWI[17:0]
[LRI EIRIR)
Resetvalue |0 olololo]o 0‘0‘0|0‘0|0‘0‘0‘0‘0|0‘0‘0‘0‘0|0‘0‘0
~ ™ N |~ [|o
EXTI_PR | o R R T PIF[17:0]
0x14 T zlzlzlz|x
Resetvalue |0 olololo]o o‘o‘o|o‘o|o‘o‘o‘o‘o|o‘o‘o‘o‘o|o‘o‘o

Refer to Section 2.2 on page 46 for the register boundary addresses.

RMO0091 Rev 10 225/1017

3

Cyclic redundancy check calculation unit (CRC) RMO0091

12

12.1

12.2

12.3

226/1017

Cyclic redundancy check calculation unit (CRC)

Introduction

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from 8-, 16-
or 32-bit data word and a generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the functional safety standards, they offer a means of
verifying the flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link
time and stored at a given memory location.

CRC main features

e Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7
X32 + X26 + X23 4 X22 4 X16 4 X12 4 XM 4+ X10 48 + X7 + X5 + X4 + X2+ X +1
e Alternatively, uses fully programmable polynomial with programmable size (7, 8, 16, 32
bits)
e Handles 8-,16-, 32-bit data size
e Programmable CRC initial value
e Single input/output 32-bit data register
e Input buffer to avoid bus stall during calculation
e CRC computation done in 4 AHB clock cycles (HCLK) for the 32-bit data size
e General-purpose 8-bit register (can be used for temporary storage)
e Reversibility option on I/O data
e Accessed through AHB slave peripheral by 32-bit words only, with the exception of

CRC_DR register that can be accessed by words, right-aligned half-words and right-
aligned bytes
CRC implementation

Table 38. CRC features

Modes/features STgl.ﬁgg;ggind STI\S’I':I:’I\ZIII;g)I(:g;:earnt: "
STM32F09x
CRC-32 polynomial X X
Fully programmable polynomial X -
Data swapping - -

3

RMO0091 Rev 10

RMO0091 Cyclic redundancy check calculation unit (CRC)

12.4 CRC functional description

12.4.1 CRC block diagram

Figure 25. CRC calculation unit block diagram

< 32-bit AHB bus >
read access write accesﬂ L 32-bit accesses

crc_hclk———» Data register || Data register
i mu: = (miut) CRC_INIT

CRC computation

CRC_POL

CRC_IDR

MS19882V3

12.4.2 CRC internal signals

Table 39. CRC internal input/output signals

Signal name Signal type Description

crc_hclk Digital input | AHB clock

12.4.3 CRC operation

The CRC calculation unit has a single 32-bit read/write data register (CRC_DR). It is used to
input new data (write access), and holds the result of the previous CRC calculation (read
access).

Each write operation to the data register creates a combination of the previous CRC value
(stored in CRC_DR) and the new one. CRC computation is done on the whole 32-bit data
word or byte by byte depending on the format of the data being written.

The CRC_DR register can be accessed by word, right-aligned half-word and right-aligned
byte. For the other registers only 32-bit accesses are allowed.

The duration of the computation depends on data width:

e 4 AHB clock cycles for 32 bits

e 2 AHB clock cycles for 16 bits

e 1 AHB clock cycles for 8 bits

An input buffer allows a second data to be immediately written without waiting for any wait
states due to the previous CRC calculation.

3

RMO0091 Rev 10 227/1017

Cyclic redundancy check calculation unit (CRC) RMO0091

Note:

228/1017

The data size can be dynamically adjusted to minimize the number of write accesses for a
given number of bytes. For instance, a CRC for 5 bytes can be computed with a word write
followed by a byte write.

The input data can be reversed to manage the various endianness schemes. The reversing
operation can be performed on 8 bits, 16 bits and 32 bits depending on the REV_IN[1:0] bits
in the CRC_CR register.

For example, 0x1A2B3C4D input data are used for CRC calculation as:

e 0x58D43CB2 with bit-reversal done by byte

e 0xD458B23C with bit-reversal done by half-word

e (0xB23CDA458 with bit-reversal done on the full word

The output data can also be reversed by setting the REV_OUT bit in the CRC_CR register.

The operation is done at bit level. For example, 0x11223344 output data are converted to
0x22CC4488.

The CRC calculator can be initialized to a programmable value using the RESET control bit
in the CRC_CR register (the default value is OXFFFFFFFF).

The initial CRC value can be programmed with the CRC_INIT register. The CRC_DR
register is automatically initialized upon CRC_INIT register write access.

The CRC_IDR register can be used to hold a temporary value related to CRC calculation. It
is not affected by the RESET bit in the CRC_CR register.

Polynomial programmability

The polynomial coefficients are fully programmable through the CRC_POL register, and the
polynomial size can be configured to be 7, 8, 16 or 32 bits by programming the
POLYSIZE[1:0] bits in the CRC_CR register. Even polynomials are not supported.

The type of an even polynomial is X+X2%+..+X", while the type of an odd polynomial is
1+X+X2+. +X".

If the CRC data is less than 32-bit, its value can be read from the least significant bits of the
CRC_DR register.

To obtain a reliable CRC calculation, the change on-fly of the polynomial value or size can
not be performed during a CRC calculation. As a result, if a CRC calculation is ongoing, the
application must either reset it or perform a CRC_DR read before changing the polynomial.

The default polynomial value is the CRC-32 (Ethernet) polynomial: 0x4C11DB?7.

3

RMO0091 Rev 10

RMO0091 Cyclic redundancy check calculation unit (CRC)

12.5 CRC registers

The CRC_DR register can be accessed by words, right-aligned half-words and right-aligned
bytes. For the other registers only 32-bit accesses are allowed.

12.5.1 CRC data register (CRC_DR)

Address offset: 0x00
Reset value: OxFFFF FFFF

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DR[31:16]

v v [w [w [w [w [w [w [w o [w[w][~]w][w]w
15 14 13 12 " M0 9 8 7 6 5 4 3 2 1 0
DR[15:0]

v v [w [w [w [w [w [w[w[w[w|[w][~]w][wlw

Bits 31:0 DR[31:0]: Data register bits
This register is used to write new data to the CRC calculator.
It holds the previous CRC calculation result when it is read.

If the data size is less than 32 bits, the least significant bits are used to write/read the correct
value.

12.5.2 CRC independent data register (CRC_IDR)
Address offset: 0x04
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDR[7:0]

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 IDR[7:0]: General-purpose 8-bit data register bits
These bits can be used as a temporary storage location for one byte.

This register is not affected by CRC resets generated by the RESET bit in the CRC_CR
register

3

RMO0091 Rev 10 229/1017

Cyclic redundancy check calculation unit (CRC) RMO0091

12.5.3 CRC control register (CRC_CR)

Address offset: 0x08
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
REV_ _ .
OUT | REVLIN[1:0] | POLYSIZE[1:0] RESET
w w w w w rs

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 REV_OUT: Reverse output data
This bit controls the reversal of the bit order of the output data.
0: Bit order not affected
1: Bit-reversed output format

Bits 6:5 REV_IN[1:0]: Reverse input data
This bitfield controls the reversal of the bit order of the input data
00: Bit order not affected
01: Bit reversal done by byte
10: Bit reversal done by half-word
11: Bit reversal done by word

Bits 4:3 POLYSIZE[1:0]: Polynomial size
These bits control the size of the polynomial. This bitfield is reserved if the fully
programmable polynomial is not available (refer to Section 12.3: CRC implementationd).
00: 32 bit polynomial
01: 16 bit polynomial
10: 8 bit polynomial
11: 7 bit polynomial

Bits 2:1 Reserved, must be kept at reset value.

Bit0 RESET: RESET bit

This bit is set by software to reset the CRC calculation unit and set the data register to the
value stored in the CRC_INIT register. This bit can only be set, it is automatically cleared by
hardware

3

230/1017 RMO0091 Rev 10

RMO0091 Cyclic redundancy check calculation unit (CRC)

12.5.4 CRC initial value (CRC_INIT)

Address offset: 0x10
Reset value: OxFFFF FFFF

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CRC_INIT[31:16]

v [[w v [[w o [w [w [w [w][w[~]w][w][w
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
CRC_INIT[15:0]

v [[w v [w [w o [w][w [w [w][w[~]w][w][w

Bits 31:0 CRC_INIT[31:0]: Programmable initial CRC value
This register is used to write the CRC initial value.
12.5.5 CRC polynomial (CRC_POL)

Address offset: 0x14
Reset value: 0x04C1 1DB7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
POL[31:16]

r/rw|r/rw|r/rw| r/rw|r/rw|r/rw| r/mw | r/rw | r/mw | r/rw | r/rw| r/rw| r/rw | r/mw | r/rw |r/rw

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
POL[15:0]

r/rw|r/rw|r/rw| r/rw|r/rw|r/rw| r/mw | r/rw | r/mw | r/mw | r/rw| r/rw| r/rw | r/mw | r/rw |r/rw

Bits 31:0 POL[31:0]: Programmable polynomial (for STM32F07x and STM32F09x)

This register is used to write the coefficients of the polynomial to be used for CRC
calculation.

If the polynomial size is less than 32 bits, the least significant bits have to be used to program
the correct value.

For STM32F03x, STM32F04x, and STM32F05x, the field is read-only.

3

RMO0091 Rev 10 231/1017

Cyclic redundancy check calculation unit (CRC) RMO0091

12.5.6 CRC register map
Table 40. CRC register map and reset values
Offset| Redister /228 |N|& |8 I3[(R[S [R[2|2 |5 |2|2[2|2|N|F|2|o|o|~ o] 0| +|o/~|x|o
CRC_DR DR[31:0]
0x00
Reset value 1111111111111111111111111‘1‘1‘1‘1‘1|1|1
CRC_IDR IDR[7:0]
0x04
Reset value 0 0‘0 0‘0 0|0fo0
— | =
= 2 =
8 hal) m
CRC_CR | 2 N 7
— > | [|
0x08 rr] B @
X g | O
o
Reset value 0|0 ‘ 0|0 ‘ 0 0
CRC_INIT CRC_INIT[31:0]
0x10
Reset value 1‘1‘1‘1|1|1‘1‘1‘1‘1‘1‘1|1|1|1‘1‘1‘1‘1‘1‘1|1|1‘1‘1‘1‘1‘1‘1‘1|1|1
CRC_POL POL[31:0]
0x14
Reset value 0‘0|0|0|0|1|0|0‘1‘1|0|0|0|0|0|1|0‘0‘0|1|1|1|0|1|1‘0‘1‘1|0|1|1|1
Refer to Section 2.2 on page 46 for the register boundary addresses.
232/1017 RM0091 Rev 10 Kys

RMO0091 Analog-to-digital converter (ADC)

13 Analog-to-digital converter (ADC)

13.1 Introduction

The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 19
multiplexed channels allowing it to measure signals from 16 external and 3 internal sources.
A/D conversion of the various channels can be performed in single, continuous, scan or
discontinuous mode. The result of the ADC is stored in a left-aligned or right-aligned 16-bit
data register.

The analog watchdog feature allows the application to detect if the input voltage goes
outside the user-defined higher or lower thresholds.

An efficient low-power mode is implemented to allow very low consumption at low
frequency.

3

RMO0091 Rev 10 233/1017

Analog-to-digital converter (ADC) RMO0091

13.2

234/1017

ADC main features

High performance
12-bit, 10-bit, 8-bit or 6-bit configurable resolution

— ADC conversion time: 1.0 ps for 12-bit resolution (1 MHz), 0.93 ps conversion
time for 10-bit resolution, faster conversion times can be obtained by lowering
resolution.

Self-calibration

Programmable sampling time

Data alignment with built-in data coherency
— DMA support

Low-power

— The application can reduce PCLK frequency for low-power operation while still
keeping optimum ADC performance. For example, 1.0 ys conversion time is kept,
whatever the PCLK frequency

— Wait mode: prevents ADC overrun in applications with low PCLK frequency

— Auto off mode: ADC is automatically powered off except during the active
conversion phase. This dramatically reduces the power consumption of the ADC.

Analog input channels

16 external analog inputs

1 channel for internal temperature sensor (Vgensg)

1 channel for internal reference voltage (VrgrinT)

1 channel for monitoring external Vgat power supply pin
Start-of-conversion can be initiated:

— By software

— By hardware triggers with configurable polarity (timer events)
Conversion modes

— Can convert a single channel or can scan a sequence of channels.
— Single mode converts selected inputs once per trigger

— Continuous mode converts selected inputs continuously

— Discontinuous mode

Interrupt generation at the end of sampling, end of conversion, end of sequence
conversion, and in case of analog watchdog or overrun events

Analog watchdog
ADC input range: Vgga < VN < Vppa

3

RMO0091 Rev 10

RM0091

Analog-to-digital converter (ADC)

13.3

ADC functional description

Figure 26 shows the ADC block diagram and Table 41 gives the ADC pin description.

Figure 26. ADC block diagram

Vopa 2
—

Voo

Analog supply

ADC interrupt

» IRQ

CPU

DMA

SCANDIR up/ 24Vto36V AREADY.
down EOSMP.
. AUTOFF auto-off EOSEQ
CH_SEL[18:0] mode EOC
CONT single/ ADEN/ADDIS - OVR
cont. DATA[11:0] i> AWD
Varr/2 Supply and
BAT ADCAL self- reference APB
VRerINT calibration ;
Vsense Input foratt interface
selection VIN SARADC
& scan SMP[2:0] T
ADC_IN[15:0] Vi LcoNr! sampling time L Bm(E:l:G
= Converted data
start

DMA request

AWDx
Analog

TIM1_TRGO
TIM1_CC4
TIM2_TRGO
TIM3_TRGO
TIM15_TRGO

Start & Stop T
control
OVRMOD
WAIT] ADSTART overrun mot.ie
ADSTP S/W trigger -ALIGN left/right

8, 6 bits

DISCEN
discontinuous
mode

trigger
EXTEN[1:0]

trigger enable

and edge selection

I
EXTSEL[2:0]
trigger selection

RSE[1:0] 12, 10,

AWDXEN watchdog
AWDXSGL
AWDCHx[4:0]
LTx[11:0]
HTX[11:0]
MSv30333V4

13.3.1 ADC pins and internal signals
Table 41. ADC input/output pins
Name Signal type Remarks
Input, analog power Analog power supply and positive reference voltage
VDDA
supply for the ADC
Input, analog supply
VSSA ground Ground for analog power supply
ADC_INx Analog input signals 16 external analog input channels

3

RMO0091 Rev 10

235/1017

Analog-to-digital converter (ADC) RMO0091

13.3.2

236/1017

Table 42. ADC internal input/output signals

Inter:::ns;gnal Signal type Description
N ?::rl](;%gput g;)tr;r:r?acltiﬂ:ri]t:;rsto internal channels or to ADC_IN/
TRGx Input ADC conversion triggers
VseNsSE Input Internal temperature sensor output voltage
VREEINT Input Internal voltage reference output voltage
VBeaT/2 Input VBAT pin input voltage divided by 2
ADC_ANDS OUT | ouput |l g el st stnecomreted oo
Table 43. External triggers
Name Source EXTSEL[2:0]
TRGO TIM1_TRGO 000
TRG1 TIM1_CC4 001
TRG2 TIM2_TRGO 010
TRG3 TIM3_TRGO 011
TRG4 TIM15_TRGO 100
TRG5 Reserved 101
TRG6 Reserved 110
TRG7 Reserved 111

Calibration (ADCAL)

The ADC has a calibration feature. During the calibration phase, the ADC calculates a
calibration factor which is internally applied to the ADC until the next ADC power-off. The
application must not use the ADC during calibration and must wait until it is complete.

Calibration should be performed before starting A/D conversion. It removes the offset error
which may vary from chip to chip due to process variation.

The calibration is initiated by software by setting ADCAL bit to 1. It can only be initiated
when the ADC is disabled (when ADEN = 0). ADCAL bit stays at 1 during the whole
calibration sequence. It is then cleared by hardware as soon the calibration completes. After
this, the calibration factor can be read from the ADC_DR register (from bits 6 to 0).

The internal analog calibration is kept if the ADC is disabled (ADEN = 0). When the ADC
operating conditions change (Vppa changes are the main contributor to ADC offset
variations and temperature change to a lesser extend), it is recommended to re-run a
calibration cycle.

The calibration factor is lost each time power is removed from the ADC (for example when
the product enters Standby mode).

3

RMO0091 Rev 10

RM0091

Analog-to-digital converter (ADC)

13.3.3

3

Calibration software procedure

1. Ensure that ADEN = 0 and DMAEN = 0.

2. SetADCAL =1.

3. Wait until ADCAL = 0.

4. The calibration factor can be read from bits 6:0 of ADC_DR.

For code example refer to the Appendix section A.7.1: ADC calibration code example.

Figure 27. ADC calibration

| tcas |
| |
ADCAL T *
ADC State OFF X Startup Y CALIBRATE X OFF
ADC_DR[6:0] I 0x00 j(CALIBRATION FACTOR

| |
|byS/W F by HW _+_|

MS30335V1

ADC on-off control (ADEN, ADDIS, ADRDY)
At power-up, the ADC is disabled and put in power-down mode (ADEN = 0).

As shown in Figure 28, the ADC needs a stabilization time of tgTpg before it starts
converting accurately.
Two control bits are used to enable or disable the ADC:

e Set ADEN = 1 to enable the ADC. The ADRDY flag is set as soon as the ADC is ready
for operation.

e Set ADDIS = 1 to disable the ADC and put the ADC in power down mode. The ADEN
and ADDIS bits are then automatically cleared by hardware as soon as the ADC is fully
disabled.

Conversion can then start either by setting ADSTART to 1 (refer to Section 13.4: Conversion
on external trigger and trigger polarity (EXTSEL, EXTEN) on page 244) or when an external
trigger event occurs if triggers are enabled.

Follow this procedure to enable the ADC:

1. Clear the ADRDY bit in ADC_ISR register by programming this bit to 1.

2. SetADEN =1 in the ADC_CR register.

3. Wait until ADRDY = 1 in the ADC_ISR register and continue to write ADEN = 1
(ADRDY is set after the ADC startup time). This can be handled by interrupt if the
interrupt is enabled by setting the ADRDYIE bit in the ADC_IER register.

For code example refer to the Appendix section A.7.2: ADC enable sequence code
example.

RMO0091 Rev 10 237/1017

Analog-to-digital converter (ADC) RMO0091

Follow this procedure to disable the ADC:

1. Check that ADSTART = 0 in the ADC_CR register to ensure that no conversion is
ongoing. If required, stop any ongoing conversion by writing 1 to the ADSTP bit in the
ADC_CR register and waiting until this bit is read at 0.

2. SetADDIS =1 in the ADC_CR register.

3. If required by the application, wait until ADEN = 0 in the ADC_CR register, indicating
that the ADC is fully disabled (ADDIS is automatically reset once ADEN = 0).

4. Clear the ADRDY bit in ADC_ISR register by programming this bit to 1 (optional).

For code example refer to the Appendix section A.7.3: ADC disable sequence code
example.

Caution: ADEN bit cannot be set when ADCAL = 1 and during four ADC clock cycles after the
ADCAL bit is cleared by hardware (end of calibration).

Figure 28. Enabling/disabling the ADC

' ¢ STAB

ADRDY vV '
ADDIS l

ADEN ;

ADC -~ - - - -—-~- REQ\
stat OFF XStartup XRDY CONVERTING CH RDY X_OFX OFF

by sS\w _A by HW _ V¥

MS30264V2

Note: In Auto-off mode (AUTOFF = 1) the power-on/off phases are performed automatically, by
hardware and the ADRDY flag is not set.

3

238/1017 RMO0091 Rev 10

RM0091

Analog-to-digital converter (ADC)

13.3.4

3

ADC clock (CKMODE)

The ADC has a dual clock-domain architecture, so that the ADC can be fed with a clock
(ADC asynchronous clock) independent from the APB clock (PCLK).

Figure 29. ADC clock scheme

RCC
(Reset & Clock Controller) > APB interface|

PCLK

Bits CKMODE[1:0]
of ADC_CFGR2
Analog
> ADC

ADC

asynchronous

clock Bits CKMODE[1:0] of

ADC_CFGR2

MSv31473V2

1. Refer to Section Reset and clock control (RCC) for how the PCLK clock and ADC asynchronous clock are
enabled.

The input clock of the analog ADC can be selected between two different clock sources (see
Figure 29: ADC clock scheme to see how the PCLK clock and the ADC asynchronous clock
are enabled):

a) The ADC clock can be a specific clock source, named “ADC asynchronous clock®
which is independent and asynchronous with the APB clock.
Refer to RCC Section for more information on generating this clock source.

To select this scheme, bits CKMODE[1:0] of the ADC_CFGR2 register must be
reset.

For code example refer to the Appendix section A.7.4: ADC clock selection code
example.

b) The ADC clock can be derived from the APB clock of the ADC bus interface,
divided by a programmable factor (1, 2 or 4) according to bits CKMODE]1:0].

To select this scheme, bits CKMODE[1:0] of the ADC_CFGR2 register must be
different from “00”.

Option a) has the advantage of reaching the maximum ADC clock frequency whatever the
APB clock scheme selected.

Option b) has the advantage of bypassing the clock domain resynchronizations. This can be
useful when the ADC is triggered by a timer and if the application requires that the ADC is
precisely triggered without any uncertainty (otherwise, an uncertainty of the trigger instant is
added by the resynchronizations between the two clock domains).

RMO0091 Rev 10 239/1017

Analog-to-digital converter (ADC) RMO0091

13.3.5

Note:

13.3.6

240/1017

Table 44. Latency between trigger and start of conversion("

ADC clock source CKMODE[1:0] Latency between the trlggel_' event
and the start of conversion
Dedicated 14MHz clock 00 Latency is not deterministic (jitter)
o Latency is deterministic (no jitter) and equal to
PCLK divided by 2 01 2.75 ADC clock cycles
. Latency is deterministic (no jitter) and equal to
PCLK divided by 4 10 2.625 ADC clock cycles

1. Refer to the device datasheet for the maximum ADC_CLK frequency.

Configuring the ADC

The software must write the ADCAL and ADEN bits in the ADC_CR register only when the
ADC is disabled (ADEN cleared).

The software must only write to the ADSTART and ADDIS bits in the ADC_CR register only
if the ADC is enabled and there is no pending request to disable the ADC (ADEN = 1 and
ADDIS = 0).

For all the other control bits in the ADC_IER, ADC_CFGRIi, ADC_SMPR, ADC_TR,
ADC_CHSELR and ADC_CCR registers, refer to the description of the corresponding
control bit in Section 13.11: ADC registers.

The software must only write to the ADSTP bit in the ADC_CR register if the ADC is enabled
(and possibly converting) and there is no pending request to disable the ADC (ADSTART =
1 and ADDIS = 0).

There is no hardware protection preventing software from making write operations forbidden
by the above rules. If such a forbidden write access occurs, the ADC may enter an
undefined state. To recover correct operation in this case, the ADC must be disabled (clear
ADEN = 0 and all the bits in the ADC_CR register).

Channel selection (CHSEL, SCANDIR)

There are up to 19 multiplexed channels:

e 16 analog inputs from GPIO pins (ADC_INx)

e 3internal analog inputs (temperature sensor, internal reference voltage, Vgat channel)
It is possible to convert a single channel or a sequence of channels.

The sequence of the channels to be converted can be programmed in the ADC_CHSELR
channel selection register: each analog input channel has a dedicated selection bit
(CHSELX).

The order in which the channels is scanned can be configured by programming the bit
SCANDIR bit in the ADC_CFGR1 register:

. SCANDIR = 0: forward scan Channel 0 to Channel 18
e SCANDIR = 1: backward scan Channel 18 to Channel 0

Temperature sensor, VgeginT @and Vgar internal channels

The temperature sensor is connected to channel ADC Vy[16].

3

RMO0091 Rev 10

RM0091

Analog-to-digital converter (ADC)

13.3.7

13.3.8

Note:

3

The internal voltage reference VrggnT i connected to channel ADC V|\[17].

Vgar channel is connected to ADC V,\[18] channel.

Programmable sampling time (SMP)

Before starting a conversion, the ADC needs to establish a direct connection between the
voltage source to be measured and the embedded sampling capacitor of the ADC. This
sampling time must be enough for the input voltage source to charge the sample and hold
capacitor to the input voltage level.

Having a programmable sampling time allows the conversion speed to be trimmed
according to the input resistance of the input voltage source.

The ADC samples the input voltage for a number of ADC clock cycles that can be modified
using the SMP[2:0] bits in the ADC_SMPR register.

This programmable sampling time is common to all channels. If required by the application,
the software can change and adapt this sampling time between each conversions.

The total conversion time is calculated as follows:
tcony = Sampling time + 12.5 x ADC clock cycles

Example:
With ADC_CLK = 14 MHz and a sampling time of 1.5 ADC clock cycles:
tcony = 1.5+ 12.5 = 14 ADC clock cycles = 1 ps

The ADC indicates the end of the sampling phase by setting the EOSMP flag.

Single conversion mode (CONT =0)

In Single conversion mode, the ADC performs a single sequence of conversions, converting
all the channels once. This mode is selected when CONT =0 in the ADC_CFGR1 register.
Conversion is started by either:

e Setting the ADSTART bit in the ADC_CR register

e Hardware trigger event

Inside the sequence, after each conversion is complete:

e The converted data are stored in the 16-bit ADC_DR register
e The EOC (end of conversion) flag is set

e Aninterrupt is generated if the EOCIE bit is set

After the sequence of conversions is complete:

e The EOS (end of sequence) flag is set

e Aninterrupt is generated if the EOSIE bit is set

Then the ADC stops until a new external trigger event occurs or the ADSTART bit is set
again.

To convert a single channel, program a sequence with a length of 1.

RMO0091 Rev 10 241/1017

Analog-to-digital converter (ADC) RMO0091

13.3.9 Continuous conversion mode (CONT =1)

In continuous conversion mode, when a software or hardware trigger event occurs, the ADC
performs a sequence of conversions, converting all the channels once and then
automatically re-starts and continuously performs the same sequence of conversions. This
mode is selected when CONT = 1 in the ADC_CFGR1 register. Conversion is started by
either:

e Setting the ADSTART bit in the ADC_CR register
e Hardware trigger event

Inside the sequence, after each conversion is complete:

e The converted data are stored in the 16-bit ADC_DR register
e The EOC (end of conversion) flag is set

e Aninterrupt is generated if the EOCIE bit is set

After the sequence of conversions is complete:
e The EOS (end of sequence) flag is set
e Aninterrupt is generated if the EOSIE bit is set
Then, a new sequence restarts immediately and the ADC continuously repeats the
conversion sequence.
Note: To convert a single channel, program a sequence with a length of 1.

It is not possible to have both discontinuous mode and continuous mode enabled: it is
forbidden to set both bits DISCEN = 1 and CONT = 1.

13.3.10 Starting conversions (ADSTART)

Software starts ADC conversions by setting ADSTART = 1.

When ADSTART is set, the conversion:
e Starts immediately if EXTEN = 00 (software trigger)
e At the next active edge of the selected hardware trigger if EXTEN # 00
The ADSTART bit is also used to indicate whether an ADC operation is currently ongoing. It
is possible to re-configure the ADC while ADSTART = 0, indicating that the ADC is idle.
The ADSTART bit is cleared by hardware:
¢ Insingle mode with software trigger (CONT = 0, EXTEN = 00)
— At any end of conversion sequence (EOS = 1)
e Indiscontinuous mode with software trigger (CONT =0, DISCEN =1, EXTEN = 00)
— Atend of conversion (EOC =1)
e Inall cases (CONT =x, EXTEN = XX)
— After execution of the ADSTP procedure invoked by software (see
Section 13.3.12: Stopping an ongoing conversion (ADSTP) on page 244)
Note: In continuous mode (CONT = 1), the ADSTART bit is not cleared by hardware when the
EQOS flag is set because the sequence is automatically relaunched.

When hardware trigger is selected in single mode (CONT = 0 and EXTEN = 01), ADSTART
is not cleared by hardware when the EOS flag is set (except if DMAEN = 1 and
DMACFG = 0 in which case ADSTART is cleared at end of the DMA transfer). This avoids

242/1017 RMO0091 Rev 10 ‘7]

RMO0091 Analog-to-digital converter (ADC)

the need for software having to set the ADSTART bit again and ensures the next trigger
event is not missed.

13.3.11 Timings

The elapsed time between the start of a conversion and the end of conversion is the sum of
the configured sampling time plus the successive approximation time depending on data
resolution:

tconv = tsmpL * tsar = [1-5 min + 12.5 |120itl X tapc_cLk

tcony = tsmpL + tsar = 107.1 NS |yin + 892.8 ns 424t = 1 PS |min (for fapc_cLk = 14 MH2)

Figure 30. Analog to digital conversion time

ADC state __ RDY X SAMPLING CH(N) X CONVERTING CH(N) X SAMPLING CH(N+1)
Analo g 4 g
chann%l LTI CH(N), CH(N+1)
Internal S/H X Sample AIN(N+1) X Hold AIN(N) Y Sample AIN(N+1)
. ! tsmpL (1) ! tsar(2) '
se 1 Il 1
ADSTART __bySW/, 5 5
: set by HW J \ cleared by SW '
EOSMP ' ' set 1 cleared
EOC by HW 4 by SW
ADC_DR DATA N-1)(DATAN
(1) tsmpL depends on SMP[2:0] '
(2) tsar depends on RES[2:0] MS30336V1

Figure 31. ADC conversion timings

ADSTART® —/l

)

tLatency
ADC state Ready S0 Conversion 0 S1 Conversion 1 S2 Conversion 2 S3 Conversion 3
3 3
WLATENCY() Wiatency @ WiaTENG ®
ADC_DR «—
Data (>< Data {1 Data 2

MSv33174V1

1. EXTEN =00 or EXTEN # 00
2. Trigger latency (refer to datasheet for more details)
3. ADC_DR register write latency (refer to datasheet for more details)

3

RMO0091 Rev 10 243/1017

Analog-to-digital converter (ADC) RMO0091

13.3.12

13.4

Note:

244/1017

Stopping an ongoing conversion (ADSTP)

The software can decide to stop any ongoing conversions by setting ADSTP =1 in the
ADC_CR register.

This resets the ADC operation and the ADC is idle, ready for a new operation.

When the ADSTP bit is set by software, any ongoing conversion is aborted and the result is
discarded (ADC_DR register is not updated with the current conversion).

The scan sequence is also aborted and reset (meaning that restarting the ADC would re-
start a new sequence).

Once this procedure is complete, the ADSTP and ADSTART bits are both cleared by
hardware and the software must wait until ADSTART=0 before starting new conversions.

Figure 32. Stopping an ongoing conversion

ADC state RDY X SAMPLING CH(N) X CONVERTING CH(N))I(RDY
ADSTART _setby SW/ ;\ cleared by HW
ADSTOP set by SW /'?\ cleared by HW
ADC_DR DATA N-1
MS30337V1

Conversion on external trigger and trigger polarity (EXTSEL,
EXTEN)

A conversion or a sequence of conversion can be triggered either by software or by an
external event (for example timer capture). If the EXTEN[1:0] control bits are not equal to
“Ob00”, then external events are able to trigger a conversion with the selected polarity. The
trigger selection is effective once software has set bit ADSTART = 1.

Any hardware triggers which occur while a conversion is ongoing are ignored.

If bit ADSTART = 0, any hardware triggers which occur are ignored.

Table 45 provides the correspondence between the EXTEN[1:0] values and the trigger
polarity.

Table 45. Configuring the trigger polarity

Source EXTEN[1:0]
Trigger detection disabled 00
Detection on rising edge 01
Detection on falling edge 10
Detection on both rising and falling edges 11

The polarity of the external trigger can be changed only when the ADC is not converting
(ADSTART = 0).

The EXTSEL[2:0] control bits are used to select which of 8 possible events can trigger
conversions.

RMO0091 Rev 10 ‘7]

RM0091

Analog-to-digital converter (ADC)

Note:

13.4.1

Note:

13.4.2

Note:

3

Refer to Table 43: External triggers in Section 13.3.1: ADC pins and internal signals for the
list of all the external triggers that can be used for regular conversion.

The software source trigger events can be generated by setting the ADSTART bit in the
ADC_CR register.

The trigger selection can be changed only when the ADC is not converting (ADSTART = 0).

Discontinuous mode (DISCEN)
This mode is enabled by setting the DISCEN bit in the ADC_CFGR1 register.

In this mode (DISCEN = 1), a hardware or software trigger event is required to start each
conversion defined in the sequence. On the contrary, if DISCEN = 0, a single hardware or
software trigger event successively starts all the conversions defined in the sequence.
Example:
e DISCEN =1, channels to be converted =0, 3, 7, 10

— 1st trigger: channel 0 is converted and an EOC event is generated

— 2nd trigger: channel 3 is converted and an EOC event is generated

— 3rd trigger: channel 7 is converted and an EOC event is generated

— 4th trigger: channel 10 is converted and both EOC and EOS events are
generated.

— 5th trigger: channel 0 is converted an EOC event is generated
— 6th trigger: channel 3 is converted and an EOC event is generated
e DISCEN =0, channels to be converted =0, 3, 7, 10

— 1sttrigger: the complete sequence is converted: channel 0, then 3, 7 and 10. Each
conversion generates an EOC event and the last one also generates an EOS
event.

— Any subsequent trigger events restarts the complete sequence.

It is not possible to have both discontinuous mode and continuous mode enabled: it is
forbidden to set both bits DISCEN = 1 and CONT = 1.

Programmable resolution (RES) - Fast conversion mode

It is possible to obtain faster conversion times (tgar) by reducing the ADC resolution.

The resolution can be configured to be either 12, 10, 8, or 6 bits by programming the
RES[1:0] bits in the ADC_CFGR1 register. Lower resolution allows faster conversion times
for applications where high data precision is not required.

The RES[1:0] bit must only be changed when the ADEN bit is reset.

The result of the conversion is always 12 bits wide and any unused LSB bits are read as
Zeros.

Lower resolution reduces the conversion time needed for the successive approximation
steps as shown in Table 46.

RMO0091 Rev 10 245/1017

Analog-to-digital converter (ADC) RMO0091

Table 46. tgpr timings depending on resolution

tsar tSMPL (min) tcony
RES[1 0] tSAR (ns) at tCONV (I'IS) at
bits (ADC clock fapc = 14 MHz (ADC clock (AD_C cIO_ck cycles) fapc = 14 MHz
cycles) cycles) (with min. tgypy)

12 12.5 893 1.5 14 1000

10 1.5 821 1.5 13 928

8 9.5 678 1.5 1 785

6 75 535 1.5 9 643

13.4.3 End of conversion, end of sampling phase (EOC, EOSMP flags)
The ADC indicates each end of conversion (EOC) event.

The ADC sets the EOC flag in the ADC_ISR register as soon as a new conversion data
result is available in the ADC_DR register. An interrupt can be generated if the EOCIE bit is
set in the ADC_IER register. The EOC flag is cleared by software either by writing 1 to it, or
by reading the ADC_DR register.

The ADC also indicates the end of sampling phase by setting the EOSMP flag in the
ADC_ISR register. The EOSMP flag is cleared by software by writing1 to it. An interrupt can
be generated if the EOSMPIE bit is set in the ADC_IER register.

The aim of this interrupt is to allow the processing to be synchronized with the conversions.
Typically, an analog multiplexer can be accessed in hidden time during the conversion
phase, so that the multiplexer is positioned when the next sampling starts.

Note: As there is only a very short time left between the end of the sampling and the end of the
conversion, it is recommenced to use polling or a WFE instruction rather than an interrupt
and a WFI instruction.

13.4.4 End of conversion sequence (EOS flag)
The ADC notifies the application of each end of sequence (EOS) event.

The ADC sets the EOS flag in the ADC_ISR register as soon as the last data result of a
conversion sequence is available in the ADC_DR register. An interrupt can be generated if
the EOSIE bit is set in the ADC_IER register. The EOS flag is cleared by software by writing
1toit.

3

246/1017 RMO0091 Rev 10

RMO0091 Analog-to-digital converter (ADC)

13.4.5 Example timing diagrams (single/continuous modes
hardware/software triggers)

Figure 33. Single conversions of a sequence, software trigger

ADSTART®" A v A v
EOC £V &£ £ £ £ &£ £ £

EOS L £

SCANDIR a\

ADC state® RDY X _CHO X CH9 X CH10X CH17X___RDY X CH17X_CH10X_CH9 X CHO X RDY

ADC_DR X_D0o X D9 X D10 X D17 X D17 X D10 X D9 X DO

by SW_4 by HW_ &

MSv30338V3

1. EXTEN =00, CONT =0
2. CHSEL = 0x20601, WAIT = 0, AUTOFF =0

For code example refer to the Appendix section A.7.5: Single conversion sequence code
example - Software trigger.

Figure 34. Continuous conversion of a sequence, software trigger

ADSTART® &} v~
Eoc AL AV AV 4 4L 4T 4 4
EOS £V
ADSTP r v
SCANDIR i

ADC state® _RDY Y__CHO)_CH9) CH10Y CH17)_ CHO X _CH9 X CH1% STP X__RDY)X CH1}_ CHI0{_

ADC_DR X_D0 X D9 X D10 X D17 X DO X D9 X D17 X

by SW_4 by HW_4&

MSv30339V2

1. EXTEN =00, CONT =1,
2. CHSEL = 0x20601, WAIT = 0, AUTOFF =0

For code example refer to the Appendix section A.7.6: Continuous conversion sequence
code example - Software trigger.

3

RMO0091 Rev 10 247/1017

Analog-to-digital converter (ADC) RMO0091

Figure 35. Single conversions of a sequence, hardware trigger

ADSTART®" S
EOC 4V 4V 4V 40 4V 40 404

EOS + 1/ W

TRex" _F L] * [. SR S—

ADC state®® RDY Y _CHO)Y CH1 Y _CH2 X CH3 X_RDY{ CHO ¥ CHT ¥ CH2 ¥ CH3) RDYX_

ADC_DR X D0 X_ D1 XD2 X D3 X_ D0 X_D1 X D2 X D3

bysw & byHw _&
triggered i ignored ok

MSv30340V2

1. EXTSEL = TRGx (over-frequency), EXTEN = 01 (rising edge), CONT =0
2. CHSEL = 0xF, SCANDIR = 0, WAIT =0, AUTOFF =0

For code example refer to the Appendix section A.7.7: Single conversion sequence code
example - Hardware trigger.

Figure 36. Continuous conversions of a sequence, hardware trigger

ADSTART? A v
EOC L NV SR NV VAR NV VAR SV S
EOS £ U £ U
ADSTP R
TRGx"] l *

ADC state® RDY X CHO)Y CH1 Y CH2 X CH3) CHO X CH1) CH2 X CH3 X CHO YSTOR(RDY

ADC_DR X D0 X D1 X D2 X D3 X D0 X D1 X D2 X D3

bysw A byHw _4&
triggered _T_ ignored jr

MSv30341V2

1. EXTSEL = TRGx, EXTEN = 10 (falling edge), CONT = 1
2. CHSEL = 0xF, SCANDIR = 0, WAIT = 0, AUTOFF =0

For code example refer to the Appendix section A.7.8: Continuous conversion sequence
code example - Hardwatre trigger.

248/1017 RMO0091 Rev 10 ‘7]

RMO0091 Analog-to-digital converter (ADC)

13.5 Data management

13.5.1 Data register and data alignment (ADC_DR, ALIGN)

At the end of each conversion (when an EOC event occurs), the result of the converted data
is stored in the ADC_DR data register which is 16-bit wide.

The format of the ADC_DR depends on the configured data alignment and resolution.

The ALIGN bit in the ADC_CFGR1 register selects the alignment of the data stored after
conversion. Data can be right-aligned (ALIGN = 0) or left-aligned (ALIGN = 1) as shown in

Figure 37.
Figure 37. Data alignment and resolution
ALIGN| RES 15 |14 {13 |12 |11 [10 | 9 8 7 |6 5 4 3 2 1 0
0| 0x0 0x0 DR[11:0]
I I I I I I I I I I I I
0x1 0x00 DR[9:0]
I I I I I I I I I I I I I
0x2 0x00 DRI[7:0]
I | | | I I | I | I I | |
0x3 0x00 DR[5:0]
I I I I I I I I I I I I I
1 0x0 DR[11:0] 0x0
| | I | | | I | | I | |
0x1 DRI[9:0] 0x00
I I I I I I | I | I I | I
0x2 DR[7:0] 0x00
I I | I I I I I I I I I I I
0x3 0x00 DRI[5:0] 0x0
MS30342V1

13.5.2 ADC overrun (OVR, OVRMOD)

The overrun flag (OVR) indicates a data overrun event, when the converted data was not
read in time by the CPU or the DMA, before the data from a new conversion is available.

The OVR flag is set in the ADC_ISR register if the EOC flag is still at ‘1’ at the time when a
new conversion completes. An interrupt can be generated if the OVRIE bit is set in the
ADC_IER register.

When an overrun condition occurs, the ADC keeps operating and can continue to convert
unless the software decides to stop and reset the sequence by setting the ADSTP bit in the
ADC_CR register.

The OVR flag is cleared by software by writing 1 to it.

It is possible to configure if the data is preserved or overwritten when an overrun event
occurs by programming the OVRMOD bit in the ADC_CFGR1 register:

e OVRMOD=0

— Anoverrun event preserves the data register from being overwritten: the old data
is maintained and the new conversion is discarded. If OVR remains at 1, further
conversions can be performed but the resulting data is discarded.

e OVRMOD =1
— The data register is overwritten with the last conversion result and the previous

unread data is lost. If OVR remains at 1, further conversions can be performed
and the ADC_DR register always contains the data from the latest conversion.

3

RMO0091 Rev 10 249/1017

Analog-to-digital converter (ADC) RMO0091

Figure 38. Example of overrun (OVR)

ADSTART® A
EOC L JERVZ SRR NZ v vy ¥
EOS SENRENY S A S]
ST e
ADSTP L l Z Y Y
Rex" T L
ADC state™ RDY Y cHo X cHi X cH2 X cHo)\ CH1 Y _cHz Y CHoY:STop X ROY
ADC_DR read L i O\/E;RRL}NZ l
- access [[_ [—l ﬂ
ADC_DR - ' L '
(OVRMOD=0) X Do X b1 X D2 X Do .
ADC_DR :
(OVRMOD=1) X_po X b1 X b2 X Do X_ D1 X D2
bySW _f byHw _4&
triggered _ [
MSv30343V3
13.5.3 Managing a sequence of data converted without using the DMA

13.5.4

13.5.5

250/1017

If the conversions are slow enough, the conversion sequence can be handled by software.
In this case the software must use the EOC flag and its associated interrupt to handle each
data result. Each time a conversion is complete, the EOC bit is set in the ADC_ISR register
and the ADC_DR register can be read. The OVRMOD bit in the ADC_CFGR1 register
should be configured to 0 to manage overrun events as an error.

Managing converted data without using the DMA without overrun

It may be useful to let the ADC convert one or more channels without reading the data after
each conversion. In this case, the OVRMOD bit must be configured at 1 and the OVR flag
should be ignored by the software. When OVRMOD = 1, an overrun event does not prevent
the ADC from continuing to convert and the ADC_DR register always contains the latest
conversion data.

Managing converted data using the DMA

Since all converted channel values are stored in a single data register, it is efficient to use
DMA when converting more than one channel. This avoids losing the conversion data
results stored in the ADC_DR register.

RMO0091 Rev 10 ‘7]

RM0091

Analog-to-digital converter (ADC)

Note:

3

When DMA mode is enabled (DMAEN bit set in the ADC_CFGR1 register), a DMA request
is generated after the conversion of each channel. This allows the transfer of the converted
data from the ADC_DR register to the destination location selected by the software.

The DMAEN bit in the ADC_CFGR1 register must be set after the ADC calibration phase.

Despite this, if an overrun occurs (OVR = 1) because the DMA could not serve the DMA
transfer request in time, the ADC stops generating DMA requests and the data
corresponding to the new conversion is not transferred by the DMA. Which means that all
the data transferred to the RAM can be considered as valid.

Depending on the configuration of OVRMOD bit, the data is either preserved or overwritten
(refer to Section 13.5.2: ADC overrun (OVR, OVRMOD) on page 249).

The DMA transfer requests are blocked until the software clears the OVR bit.
Two different DMA modes are proposed depending on the application use and are
configured with bit DMACFG in the ADC_CFGR1 register:

e DMA one shot mode (DMACFG = 0).
This mode should be selected when the DMA is programmed to transfer a fixed
number of data words.

e DMA circular mode (DMACFG = 1)
This mode should be selected when programming the DMA in circular mode or double
buffer mode.

DMA one shot mode (DMACFG =0)

In this mode, the ADC generates a DMA transfer request each time a new conversion data
word is available and stops generating DMA requests once the DMA has reached the last
DMA transfer (when a transfer complete interrupt occurs, see Section 10: Direct memory
access controller (DMA) on page 188) even if a conversion has been started again.

For code example refer to the Appendix section A.7.9: DMA one shot mode sequence code
example.

When the DMA transfer is complete (all the transfers configured in the DMA controller have
been done):

e The content of the ADC data register is frozen.

e Any ongoing conversion is aborted and its partial result discarded

e No new DMA request is issued to the DMA controller. This avoids generating an
overrun error if there are still conversions which are started.

e The scan sequence is stopped and reset
e The DMA s stopped

DMA circular mode (DMACFG = 1)

In this mode, the ADC generates a DMA transfer request each time a new conversion data
word is available in the data register, even if the DMA has reached the last DMA transfer.
This allows the DMA to be configured in circular mode to handle a continuous analog input
data stream.

For code example refer to the Appendix section A.7.10: DMA circular mode sequence code
example.

RMO0091 Rev 10 251/1017

Analog-to-digital converter (ADC) RMO0091

13.6 Low-power features

13.6.1 Wait mode conversion

Wait mode conversion can be used to simplify the software as well as optimizing the
performance of applications clocked at low frequency where there might be a risk of ADC
overrun occurring.

When the WAIT bit is set in the ADC_CFGR1 register, a new conversion can start only if the
previous data has been treated, once the ADC_DR register has been read or if the EOC bit
has been cleared.

This is a way to automatically adapt the speed of the ADC to the speed of the system that
reads the data.

Note: Any hardware triggers which occur while a conversion is ongoing or during the wait time
preceding the read access are ignored.

Figure 39. Wait mode conversion (continuous mode, software trigger)

ADSTART _ v
EOC £ £ y &
EOS P
ADSTP MY
ADC_DR Read access N N a A

ADC state _ RDY X_CH1 X DLY X CH2 CH3 X DLY X CH1 X DLY X STOPX RDY

ADC_DR X D1 D2 X D3 X D1

bysw _& byHw _4&

MSv30344V2

1. EXTEN =00, CONT =1
2. CHSEL = 0x3, SCANDIR =0, WAIT = 1, AUTOFF =0

For code example refer to the Appendix section A.7.11: Wait mode sequence code
example.

3

252/1017 RMO0091 Rev 10

RM0091

Analog-to-digital converter (ADC)

13.6.2 Auto-off mode (AUTOFF)
The ADC has an automatic power management feature which is called auto-off mode, and
is enabled by setting AUTOFF = 1 in the ADC_CFGR1 register.
When AUTOFF = 1, the ADC is always powered off when not converting and automatically
wakes-up when a conversion is started (by software or hardware trigger). A startup-time is
automatically inserted between the trigger event which starts the conversion and the
sampling time of the ADC. The ADC is then automatically disabled once the sequence of
conversions is complete.
Auto-off mode can cause a dramatic reduction in the power consumption of applications
which need relatively few conversions or when conversion requests are timed far enough
apart (for example with a low frequency hardware trigger) to justify the extra power and
extra time used for switching the ADC on and off.
Auto-off mode can be combined with the wait mode conversion (WAIT = 1) for applications
clocked at low frequency. This combination can provide significant power savings if the ADC
is automatically powered-off during the wait phase and restarted as soon as the ADC_DR
register is read by the application (see Figure 41: Behavior with WAIT = 1, AUTOFF = 1).
Figure 40. Behavior with WAIT = 0, AUTOFF =1
TRGx 1 il
EOC 4 Qz f 14 ﬁF QJ
EOS Y v
ADC_DR Read ’ ’ ’
access l_l l_l l_l l_l
ADC state __RDY)Startup{_CH1 _CH2 X_CH3 X CH4 OFF Startup
ADC_DR X _D1 Y _D2 X D3 Y D4
bysw & byHw &
triggered _f
MSv30345V2

1.

EXTSEL = TRGx, EXTEN = 01 (rising edge), CONT = x, ADSTART = 1, CHSEL = 0xF, SCANDIR = 0, WAIT =1,

AUTOFF = 1

3

For code example refer to the Appendix section A.7.12: Auto Off and no wait mode
sequence code example.

RMO0091 Rev 10 253/1017

Analog-to-digital converter (ADC) RMO0091

Figure 41. Behavior with WAIT =1, AUTOFF =1

TRGx \T ﬁ
EOC] \ £Y £ £
EOS
ADC_DR Read 1 [' I
access DLY DLY DLY DLY
=1 e — —»
ADC state RDY Startup>< CH1 >< OFF X Startup XCHZ Startup XCHS X OFF StanupX CH1
ADC_DR) D1 | D2 | D3 [D4

bysw I byHw &
triggered J_

MSv30346V2

1. EXTSEL = TRGx, EXTEN = 01 (rising edge), CONT = x, ADSTART = 1, CHSEL = OxF, SCANDIR = 0, WAIT = 1,
AUTOFF = 1

For code example refer to the Appendix section A.7.13: Auto Off and wait mode sequence
code example.

13.7 Analog window watchdog

13.71 Description of the analog watchdog

The AWD analog watchdog is enabled by setting the AWDEN bit in the ADC_CFGR1
register. It is used to monitor that either one selected channel or all enabled channels (see
Table 48: Analog watchdog channel selection) remain within a configured voltage range
(window) as shown in Figure 42.

The AWD analog watchdog status bit is set if the analog voltage converted by the ADC is
below a lower threshold or above a higher threshold. These thresholds are programmed in
HT[11:0] and LT[11:0] bit of ADC_TR register. An interrupt can be enabled by setting the
AWDIE bit in the ADC_IER register.

The AWD flag is cleared by software by programming it to it.

When converting data with a resolution of less than 12-bit (according to bits RES[1:0]), the
LSB of the programmed thresholds must be kept cleared because the internal comparison
is always performed on the full 12-bit raw converted data (left aligned).

For code example refer to the Appendix section A.7.14: Analog watchdog code example.

Table 47 describes how the comparison is performed for all the possible resolutions.

3

254/1017 RMO0091 Rev 10

RMO0091 Analog-to-digital converter (ADC)

Table 47. Analog watchdog comparison

Analog Watchdog comparison between:

Resolution
bits Comments
Raw converted
RES[1:0] data, left aligned(" Thresholds

00: 12-bit DATA[11:0] LT[11:0] and HT[11:0] |-
01: 10-bit DATA[11:2],00 LT[11:0] and HT[11:0] | The user must configure LT1[1:0] and HT1[1:0] to “00”

10: 8-bit | DATA[11:4],0000 | LT[11:0] and HT[11:0] Tohoeogf‘er must configure LT1[3:0] and HT1[3:0] to

11: 6-bit | DATA[11:6],000000 | LT[11:0] and HT[11:0] Tohoeog(s)gﬁ must configure LT1[5:0] and HT1[5:0] to

1. The watchdog comparison is performed on the raw converted data before any alignment calculation.

Table 48 shows how to configure the AWDSGL and AWDEN bits in the ADC_CFGR1
register to enable the analog watchdog on one or more channels.

Figure 42. Analog watchdog guarded area

Analog voltage

Higher threshold HTx

Guarded area
Lower threshold LTx

MS45396V1

Table 48. Analog watchdog channel selection

Channels guarded by the analog watchdog AWDSGL bit AWDEN bit
None X 0
All channels 0 1
Single(") channel 1 1

1. Selected by the AWDCHI[4:0] bits

13.7.2 ADC_AWD1_OUT output signal generation

The analog watchdog is associated to an internal hardware signal, ADC_AWD1_OUT that is
directly connected to the ETR input (external trigger) of some on-chip timers (refer to the
timers section for details on how to select the ADC_AWD1_OUT signal as ETR).

RMO0091 Rev 10 255/1017

3

Analog-to-digital converter (ADC) RMO0091

ADC_AWD1_OUT is activated when the analog watchdog is enabled:
e ADC_AWD1_OUT is set when a guarded conversion is outside the programmed
thresholds.

e ADC_AWD1_OUT is reset after the end of the next guarded conversion which is inside
the programmed thresholds. It remains at 1 if the next guarded conversions are still
outside the programmed thresholds.

e ADC_AWD1_OUT is also reset when disabling the ADC (when setting ADDIS to 1).
Note that stopping conversions (ADSTP set), might clear the ADC_AWD1_OUT state.

e ADC_AWD1_OUT state does not change when the ADC converts the none-guarded
channel (see Figure 43)

AWD flag is set by hardware and reset by software: AWD flag has no influence on the
generation of ADC_AWD1_OUT (as an example, ADC_AWD1_OUT can toggle while AWD
flag remains at 1 if the software has not cleared the flag).

The ADC_AWD1_OUT signal is generated by the ADC_CLK domain. This signal can be
generated even the APB clock is stopped.

The AWD comparison is performed at the end of each ADC conversion. The
ADC_AWD1_OUT rising edge and falling edge occurs two ADC_CLK clock cycles after the
comparison.

As ADC_AWD1_OUT is generated by the ADC_CLK domain and AWD flag is generated by
the APB clock domain, the rising edges of these signals are not synchronized.

Figure 43. ADC_AWD1_OUT signal generation

ADC STATE RDYX Conversion1 Conversion2>< Conversion3 X Conversion4 Conversion5 >< Conversion6 Conversion7 X

EOC FLAG

ADC_AWD1_OUT

inside outside inside outside outside outside inside
Cleared Cleared Cleared Cleared
AWD FLAG by SW by SW by SW by SW

I Converted channels: 1,2,3,4,5,6,7
I Guarded converted channels: 1,2,3,4,5,6,7

MSv65326V1

3

RMO0091 Rev 10

RMO0091 Analog-to-digital converter (ADC)

Figure 44. ADC_AWD1_OUT signal generation (AWD flag not cleared by software)

ADC STATE RDY >< Conversion1 Conversion2 Conversion3 Conversion4 Conversion5 Conversion6 Conversion7 X

inside outside inside outside outside outside inside

EOC FLAG

not cleared by SW

AWD FLAG

ADC_AWD1_OUT

I Converted channels: 1,2,3,4,5,6,7
I Guarded converted channels: 1,2,3,4,5,6,7

MSv65327V1

Figure 45. ADC1_AWD_OUT signal generation (on a single channel)

ADC STATE Conversion1 Conversion2 Conversion1 Conversion2 Conversion1 ><Conversion2 Conversion1>< Conversion2
outside inside outside outside
EOC FLAG A /NN
EOS FLAG /_\
Cleared Cleared
AWD FLAG /\by SW by SW

ADCy_AWD1_OUT

I Converted channels: 1 and 2
I Only channel 1 is guarded

MSv65328V1

13.7.3 Analog watchdog threshold control

LT[11:0] and HT[11:0] can be changed during an analog-to-digital conversion (that is
between the start of the conversion and the end of conversion of the ADC internal state). If
LT and HT bits are programmed during the ADC guarded channel conversion, the watchdog
function is masked for this conversion. This mask is cleared when starting a new
conversion, and the resulting new AWD threshold is applied starting the next ADC
conversion result. AWD comparison is performed at each end of conversion. If the current
ADC data are out of the new threshold interval, this does not generated any interrupt or an
ADC_AWD1_OUT signal. The Interrupt and the ADC_AWD1_OUT generation only occurs
at the end of the ADC conversion that started after the threshold update. If
ADC_AWD1_OUT is already asserted, programming the new threshold does not deassert
the ADC_AWD1_OUT signal.

3

RMO0091 Rev 10 257/1017

Analog-to-digital converter (ADC) RMO0091

13.8

258/1017

Figure 46. Analog watchdog threshold update

ADC state—<_ Conversion Conversion Conversion Conversion

\[Threshould updated
LT, HT XXXX X XXXY X XXXZ

Comparison |‘| Active ;"gMasked |—| |—|Active

MSv65329V1

Temperature sensor and internal reference voltage

The temperature sensor can be used to measure the junction temperature (T) of the
device. The temperature sensor is internally connected to the ADC V|y[16] input channel
which is used to convert the sensor’s output voltage to a digital value. The sampling time for
the temperature sensor analog pin must be greater than the minimum Tg g, value
specified in the datasheet. When not in use, the sensor can be put in power down mode.

The temperature sensor output voltage changes linearly with temperature, however its
characteristics may vary significantly from chip to chip due to the process variations. To
improve the accuracy of the temperature sensor (especially for absolute temperature
measurement), calibration values are individually measured for each part by ST during
production test and stored in the system memory area. Refer to the specific device
datasheet for additional information.

The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and comparators. VREFINT is internally connected to the ADC V,\[17] input channel.
The precise voltage of VREFINT is individually measured for each part by ST during
production test and stored in the system memory area.

Figure 47 shows the block diagram of connections between the temperature sensor, the
internal voltage reference and the ADC.

The TSEN bit must be set to enable the conversion of ADC V\[16] (temperature sensor)
and the VREFEN bit must be set to enable the conversion of ADC V|\[17] (VRerINT)-

3

RMO0091 Rev 10

RM0091

Analog-to-digital converter (ADC)

Note:

3

Figure 47. Temperature sensor and VggginT channel block diagram

TSEN control bit

\%
Temperature SENSE ADC V_[16]
sensor IN
converted data

41\
ADC .

Internal
power
block

VREFINT

Address/data bus

ADC V,[17]

VREFEN control bit

ai16065¢

Reading the temperature

Temperature (in °C) =

Select the ADC V \[16] input channel.
Select an appropriate sampling time specified in the device datasheet (Tg_tgmp)-

Set the TSEN bit in the ADC_CCR register to wake up the temperature sensor from
power down mode and wait for its stabilization time (tgtarT)-

For code example refer to the Appendix section A.7.15: Temperature configuration
code example.

Start the ADC conversion by setting the ADSTART bit in the ADC_CR register (or by
external trigger).

Read the resulting Vggnsg data in the ADC_DR register.
Calculate the temperature using the following formula

TS CAL2 TEMP - TS_CAL1 TEMP
TS_CAL2 - TS_CAL1

x (TS_DATA - TS_CAL1)+TS_CAL1_TEMP

Where:

TS_CALZ2 is the temperature sensor calibration value acquired at TS_CAL2_TEMP
(refer to the datasheet for TS_CAL2 value)

TS_CAL1 is the temperature sensor calibration value acquired at TS_CAL1_TEMP
(refer to the datasheet for TS_CAL1 value)

TS_DATA is the actual temperature sensor output value converted by ADC

Refer to the specific device datasheet for more information about TS_CAL1 and
TS_CAL2 calibration points.

For code example refer to the A.7.16: Temperature computation code example.

The sensor has a startup time after waking from power down mode before it can output
Vsense at the correct level. The ADC also has a startup time after power-on, so to minimize
the delay, the ADEN and TSEN bits should be set at the same time.

RMO0091 Rev 10 259/1017

Analog-to-digital converter (ADC) RMO0091

Note:

13.9

260/1017

Calculating the actual Vpp, voltage using the internal reference voltage

The Vppa power supply voltage applied to the device may be subject to variation or not
precisely known. The embedded internal voltage reference (VrepnT) @nd its calibration
data, acquired by the ADC during the manufacturing process at Vppa charac, €a@n be used to
evaluate the actual Vppp voltage level. -

The following formula gives the actual Vppa voltage supplying the device:
VbpA = VDDA_Charac X VREFINT_CAL / VREFINT_DATA

Where:

* Vppa_charac is the value of Vppa voltage characterized at Vgggyt during the
manufacturing process. It is specified in the device datasheet.

e VREFINT_CAL is the VREFINT calibration value
e VREFINT_DATA is the actual VREFINT output value converted by ADC

Converting a supply-relative ADC measurement to an absolute voltage value

The ADC is designed to deliver a digital value corresponding to the ratio between the analog
power supply and the voltage applied on the converted channel. For most application use
cases, it is necessary to convert this ratio into a voltage independent of Vppa. For
applications where Vppa is known and ADC converted values are right-aligned you can use
the following formula to get this absolute value:

v ___Vooa . aApc DATA
CHANNELx ~ FULL_SCALE * "= -—"" &

For applications where Vppa value is not known, you must use the internal voltage
reference and Vppa can be replaced by the expression provided in Section : Calculating the
actual Vppy voltage using the internal reference voltage, resulting in the following formula:
v _ Voo charac X VREFINT_CAL x ADC_DATA,
CHANNELxX VREFINT_DATA x FULL_SCALE

Where:

* Vppa_charac is the value of Vppa voltage characterized at Vggg iyt during the
manufacturing process. It is specified in the device datasheet.

e VREFINT_CAL is the VREFINT calibration value

e ADC_DATA, is the value measured by the ADC on channelx (right-aligned)

e VREFINT_DATA is the actual VREFINT output value converted by the ADC

e full_SCALE is the maximum digital value of the ADC output. For example with 12-bit
resolution, it is 212 - 1 = 4095 or with 8-bit resolution, 28 - 1 = 255.

If ADC measurements are done using an output format other than 12 bit right-aligned, all the
parameters must first be converted to a compatible format before the calculation is done.

Battery voltage monitoring

The VBATEN bit in the ADC_CCR register allows the application to measure the backup
battery voltage on the VBAT pin. As the Vgat voltage could be higher than Vppa, to ensure
the correct operation of the ADC, the VBAT pin is internally connected to a bridge divider.
This bridge is automatically enabled when VBATEN is set, to connect Vgt to the ADC
V|n[18] input channel. As a consequence, the converted digital value is Vgar/2. To prevent

RM0091 Rev 10 ‘Yl

RMO0091 Analog-to-digital converter (ADC)

any unwanted consumption on the battery, it is recommended to enable the bridge divider
only when needed for ADC conversion.

13.10 ADC interrupts

An interrupt can be generated by any of the following events:
e ADC power-up, when the ADC is ready (ADRDY flag)

e End of any conversion (EOC flag)

e End of a sequence of conversions (EOS flag)

e When an analog watchdog detection occurs (AWD flag)
e When the end of sampling phase occurs (EOSMP flag)

e when a data overrun occurs (OVR flag)

Separate interrupt enable bits are available for flexibility.

Table 49. ADC interrupts

Interrupt event Event flag Enable control bit
ADC ready ADRDY ADRDYIE
End of conversion EOC EOCIE
End of sequence of conversions EOS EOSIE
Analog watchdog status bit is set AWD AWDIE
End of sampling phase EOSMP EOSMPIE
Overrun OVR OVRIE

3

RMO0091 Rev 10 261/1017

Analog-to-digital converter (ADC) RMO0091

13.11

ADC registers

Refer to Section 1.2 for a list of abbreviations used in register descriptions.

13.11.1 ADC interrupt and status register (ADC_ISR)
Address offset: 0x00
Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AWD OVR | EOS | EOC |EOSMP|ADRDY
rc_w1 rcwl | rcwl [rcwl | rc_wl | rc_wil
Bits 31:13 Reserved, must be kept at reset value.
Bits 12:10 Reserved, must be kept at reset value.
Bits 9:8 Reserved, must be kept at reset value.
Bit 7 AWD: Analog watchdog flag
This bit is set by hardware when the converted voltage crosses the values programmed in ADC_TR
register. It is cleared by software by programming it to 1.
0: No analog watchdog event occurred (or the flag event was already acknowledged and cleared by
software)
1: Analog watchdog event occurred
Bits 6:5 Reserved, must be kept at reset value.
Bit4 OVR: ADC overrun
This bit is set by hardware when an overrun occurs, meaning that a new conversion has complete
while the EOC flag was already set. It is cleared by software writing 1 to it.
0: No overrun occurred (or the flag event was already acknowledged and cleared by software)
1: Overrun has occurred
Bit 3 EOS: End of sequence flag
This bit is set by hardware at the end of the conversion of a sequence of channels selected by the
CHSEL bits. It is cleared by software writing 1 to it.
0: Conversion sequence not complete (or the flag event was already acknowledged and cleared by
software)
1: Conversion sequence complete
262/1017 RM0091 Rev 10 1S7]

RM0091

Analog-to-digital converter (ADC)

Bit 2 EOC: End of conversion flag

Bit 1

This bit is set by hardware at the end of each conversion of a channel when a new data result is
available in the ADC_DR register. It is cleared by software writing 1 to it or by reading the ADC_DR
register.

0: Channel conversion not complete (or the flag event was already acknowledged and cleared by
software)
1: Channel conversion complete

EOSMP: End of sampling flag
This bit is set by hardware during the conversion, at the end of the sampling phase.lt is cleared by
software by programming it to ‘1’
0: Not at the end of the sampling phase (or the flag event was already acknowledged and cleared by
software)
1: End of sampling phase reached

Bit 0 ADRDY: ADC ready

Note:

13.11.2

31 30

This bit is set by hardware after the ADC has been enabled (ADEN = 1) and when the ADC reaches
a state where it is ready to accept conversion requests.

It is cleared by software writing 1 to it.

0: ADC not yet ready to start conversion (or the flag event was already acknowledged and cleared
by software)
1: ADC is ready to start conversion

In auto-off mode (AUTOFF = 1) the power-on/off phases are performed automatically, by
hardware and the ADRDY flag is not set.

ADC interrupt enable register (ADC_IER)

Address offset: 0x04
Reset value: 0x0000 0000

29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14

13 12 1 10 9 8 7 6 5 4 3 2 1 0

EOSMP | ADRDY

AWDIE OVRIE | EOSIE | EOCIE IE IE

Bits 31:13
Bits 12:10
Bits 9:8
Bit 7

Bits 6:5

S74

Reserved, must be kept at reset value.
Reserved, must be kept at reset value.
Reserved, must be kept at reset value.

AWDIE: Analog watchdog interrupt enable
This bit is set and cleared by software to enable/disable the analog watchdog interrupt.
0: Analog watchdog interrupt disabled
1: Analog watchdog interrupt enabled

Note: The Software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

Reserved, must be kept at reset value.

RMO0091 Rev 10 263/1017

Analog-to-digital converter (ADC) RMO0091

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

264/1017

OVRIE: Overrun interrupt enable
This bit is set and cleared by software to enable/disable the overrun interrupt.
0: Overrun interrupt disabled
1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set.

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

EOSIE: End of conversion sequence interrupt enable
This bit is set and cleared by software to enable/disable the end of sequence of conversions
interrupt.
0: EOS interrupt disabled
1: EOS interrupt enabled. An interrupt is generated when the EOS bit is set.

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

EOCIE: End of conversion interrupt enable

This bit is set and cleared by software to enable/disable the end of conversion interrupt.
0: EOC interrupt disabled
1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

EOSMPIE: End of sampling flag interrupt enable

This bit is set and cleared by software to enable/disable the end of the sampling phase interrupt.
0: EOSMP interrupt disabled.
1: EOSMP interrupt enabled. An interrupt is generated when the EOSMP bit is set.

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

ADRDYIE: ADC ready interrupt enable

This bit is set and cleared by software to enable/disable the ADC Ready interrupt.
0: ADRDY interrupt disabled.
1: ADRDY interrupt enabled. An interrupt is generated when the ADRDY bit is set.

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

3

RMO0091 Rev 10

RMO0091 Analog-to-digital converter (ADC)

13.11.3 ADC control register (ADC_CR)

Address offset: 0x08
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ADCAL
rs
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
ADSTP AEI)?S.I.TA ADDIS | ADEN
rs rs rs rs

Bit 31 ADCAL: ADC calibration

This bit is set by software to start the calibration of the ADC.

It is cleared by hardware after calibration is complete.

0: Calibration complete

1: Write 1 to calibrate the ADC. Read at 1 means that a calibration is in progress.

Note: The software is allowed to set ADCAL only when the ADC is disabled (ADCAL = 0,

ADSTART = 0, ADSTP = 0, ADDIS = 0, AUTOFF = 0, and ADEN = 0).
is allowed to

Bits 30:28 Reserved, must be kept at reset value.
Bits 27:5 Reserved, must be kept at reset value.

Bit4 ADSTP: ADC stop conversion command
This bit is set by software to stop and discard an ongoing conversion (ADSTP Command).
It is cleared by hardware when the conversion is effectively discarded and the ADC is ready to
accept a new start conversion command.
0: No ADC stop conversion command ongoing
1: Write 1 to stop the ADC. Read 1 means that an ADSTP command is in progress.
Note: Setting ADSTP to ‘1’is only effective when ADSTART = 1 and ADDIS = 0 (ADC is enabled and
may be converting and there is no pending request to disable the ADC)

Bit3 Reserved, must be kept at reset value.

3

RMO0091 Rev 10 265/1017

Analog-to-digital converter (ADC) RMO0091

Bit 2 ADSTART: ADC start conversion command

This bit is set by software to start ADC conversion. Depending on the EXTEN [1:0] configuration bits,
a conversion either starts immediately (software trigger configuration) or once a hardware trigger
event occurs (hardware trigger configuration).

It is cleared by hardware:

— In single conversion mode (CONT = 0, DISCEN = 0), when software trigger is selected
(EXTEN = 00): at the assertion of the end of Conversion Sequence (EOS) flag.

— In discontinuous conversion mode(CONT = 0, DISCEN = 1), when the software trigger is selected
(EXTEN = 00): at the assertion of the end of Conversion (EOC) flag.

— In all other cases: after the execution of the ADSTP command, at the same time as the ADSTP bit is
cleared by hardware.

0: No ADC conversion is ongoing.
1: Write 1 to start the ADC. Read 1 means that the ADC is operating and may be converting.

Note: The software is allowed to set ADSTART only when ADEN = 1 and ADDIS = 0 (ADC is enabled
and there is no pending request to disable the ADC).

Bit 1 ADDIS: ADC disable command

This bit is set by software to disable the ADC (ADDIS command) and put it into power-down state
(OFF state).

It is cleared by hardware once the ADC is effectively disabled (ADEN is also cleared by hardware at
this time).

0: No ADDIS command ongoing

1: Write 1 to disable the ADC. Read 1 means that an ADDIS command is in progress.

Note: Setting ADDIS to ‘1’is only effective when ADEN = 1 and ADSTART = 0 (which ensures that no
conversion is ongoing)
Bit0 ADEN: ADC enable command

This bit is set by software to enable the ADC. The ADC is effectively ready to operate once the
ADRDY flag has been set.

It is cleared by hardware when the ADC is disabled, after the execution of the ADDIS command.
0: ADC is disabled (OFF state)

1: Write 1 to enable the ADC.

Note: The software is allowed to set ADEN only when all bits of ADC_CR registers are 0 (ADCAL = 0,
ADSTP = 0, ADSTART = 0, ADDIS = 0 and ADEN = 0)

3

266/1017 RMO0091 Rev 10

RMO0091 Analog-to-digital converter (ADC)

13.11.4 ADC configuration register 1 (ADC_CFGR1)
Address offset: 0x0C
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
AWDCHI4:0] AWDEN | AWDSGL DISCEN

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
AUTOFF | WAIT | CONT |[OVRMOD | EXTENI[1:0] EXTSEL[2:0] ALIGN | RES[1:0] SCQND Dll\:/IéC DMAEN

Bit 31 Reserved, must be kept at reset value.

Bits 30:26 AWDCHI[4:0]: Analog watchdog channel selection
These bits are set and cleared by software. They select the input channel to be guarded by
the analog watchdog.
00000: ADC analog input Channel 0 monitored by AWD
00001: ADC analog input Channel 1 monitored by AWD
10001: ADC analog input Channel 17 monitored by AWD
10010: ADC analog input Channel 18 monitored by AWD
Others: Reserved
Note: The channel selected by the AWDCH[4:0] bits must be also set into the CHSELR
register.

The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).
Bits 25:24 Reserved, must be kept at reset value.

Bit 23 AWDEN: Analog watchdog enable
This bit is set and cleared by software.
0: Analog watchdog disabled
1: Analog watchdog enabled
Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).
Bit 22 AWDSGL: Enable the watchdog on a single channel or on all channels

This bit is set and cleared by software to enable the analog watchdog on the channel
identified by the AWDCH][4:0] bits or on all the channels

0: Analog watchdog enabled on all channels

1: Analog watchdog enabled on a single channel

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).

Bits 21:17 Reserved, must be kept at reset value.

3

RMO0091 Rev 10 267/1017

Analog-to-digital converter (ADC) RMO0091

268/1017

Bit 16

Bit 15

Bit 14

Bit 13

Bit 12

Bits 11:10

Bit 9

DISCEN: Discontinuous mode
This bit is set and cleared by software to enable/disable discontinuous mode.
0: Discontinuous mode disabled
1: Discontinuous mode enabled
Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is
forbidden to set both bits DISCEN = 1 and CONT = 1.

The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).

AUTOFF: Auto-off mode
This bit is set and cleared by software to enable/disable auto-off mode.
0: Auto-off mode disabled
1: Auto-off mode enabled

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).

WAIT: Wait conversion mode
This bit is set and cleared by software to enable/disable wait conversion mode.
0: Wait conversion mode off
1: Wait conversion mode on

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).

CONT: Single / continuous conversion mode
This bit is set and cleared by software. If it is set, conversion takes place continuously until it
is cleared.
0: Single conversion mode
1: Continuous conversion mode
Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is
forbidden to set both bits DISCEN = 1 and CONT = 1.

The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).

OVRMOD: Overrun management mode
This bit is set and cleared by software and configure the way data overruns are managed.
0: ADC_DR register is preserved with the old data when an overrun is detected.
1: ADC_DR register is overwritten with the last conversion result when an overrun is
detected.
Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).

EXTENI[1:0]: External trigger enable and polarity selection
These bits are set and cleared by software to select the external trigger polarity and enable
the trigger.
00: Hardware trigger detection disabled (conversions can be started by software)
01: Hardware trigger detection on the rising edge
10: Hardware trigger detection on the falling edge
11: Hardware trigger detection on both the rising and falling edges
Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).

Reserved, must be kept at reset value.

3

RMO0091 Rev 10

RMO0091 Analog-to-digital converter (ADC)

Bits 8:6 EXTSEL[2:0]: External trigger selection

These bits select the external event used to trigger the start of conversion (refer to Table 43:
External triggers for details):
000: TRGO
001: TRG1
010: TRG2
011: TRG3
100: TRG4
101: TRG5
110: TRG6
111: TRG7

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures

that no conversion is ongoing).

Bit 5 ALIGN: Data alignment
This bit is set and cleared by software to select right or left alignment. Refer to Figure 37:
Data alignment and resolution on page 249
0: Right alignment
1: Left alignment

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).

Bits 4:3 RES[1:0]: Data resolution
These bits are written by software to select the resolution of the conversion.
00: 12 bits
01: 10 bits
10: 8 bits
11: 6 bits

Note: The software is allowed to write these bits only when ADEN is cleared.

3

RMO0091 Rev 10 269/1017

Analog-to-digital converter (ADC) RMO0091

270/1017

Bit 2 SCANDIR: Scan sequence direction

This bit is set and cleared by software to select the direction in which the channels is scanned
in the sequence.

0: Upward scan (from CHSELO to CHSEL18)
1: Backward scan (from CHSEL18 to CHSELO)

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures

that no conversion is ongoing).

Bit 1 DMACFG: Direct memory access configuration

This bit is set and cleared by software to select between two DMA modes of operation and is
effective only when DMAEN = 1.

0: DMA one shot mode selected
1: DMA circular mode selected

For more details, refer to Section 13.5.5: Managing converted data using the DMA on
page 250

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures

that no conversion is ongoing).

Bit 0 DMAEN: Direct memory access enable

This bit is set and cleared by software to enable the generation of DMA requests. This allows
the DMA controller to be used to manage automatically the converted data. For more details,
refer to Section 13.5.5: Managing converted data using the DMA on page 250.

0: DMA disabled

1: DMA enabled

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures

that no conversion is ongoing).

3

RMO0091 Rev 10

RMO0091 Analog-to-digital converter (ADC)

13.11.5 ADC configuration register 2 (ADC_CFGR2)
Address offset: 0x10
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CKMODE([1:0]

rw w

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Bits 31:30 CKMODE[1:0]: ADC clock mode

These bits are set and cleared by software to define how the analog ADC is clocked:

00: ADCCLK (Asynchronous clock mode), generated at product level (refer to RCC section)
01: PCLK/2 (Synchronous clock mode)

10: PCLK/4 (Synchronous clock mode)
11: Reserved

In all synchronous clock modes, there is no jitter in the delay from a timer trigger to the start of a
conversion.

Note: The software is allowed to write these bits only when the ADC is disabled (ADCAL = 0,
ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0).

Bits 29:10 Reserved, must be kept at reset value.

Bits 9:0 Reserved, must be kept at reset value.

13.11.6 ADC sampling time register (ADC_SMPR)
Address offset: 0x14
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SMP[2:0]

3

RMO0091 Rev 10 27111017

Analog-to-digital converter (ADC) RMO0091

Bits 31:3

Reserved, must be kept at reset value.

Bits 2:0 SMP[2:0]: Sampling time selection
These bits are written by software to select the sampling time that applies to all channels.
000: 1.5 ADC clock cycles
001: 7.5 ADC clock cycles
010: 13.5 ADC clock cycles
011: 28.5 ADC clock cycles
100: 41.5 ADC clock cycles
101: 55.5 ADC clock cycles
110: 71.5 ADC clock cycles
111: 239.5 ADC clock cycles
Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no
conversion is ongoing).
13.11.7 ADC watchdog threshold register (ADC_TR)
Address offset: 0x20
Reset value: OxOFFF 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
HT[11:0]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LT[11:0]
Bits 31:28 Reserved, must be kept at reset value.
Bits 27:16 HT[11:0]: Analog watchdog higher threshold
These bits are written by software to define the higher threshold for the analog watchdog. Refer to
Section 13.7: Analog window watchdog on page 254
Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no
conversion is ongoing).
Bits 15:12 Reserved, must be kept at reset value.
Bits 11:0 LT[11:0]: Analog watchdog lower threshold
These bits are written by software to define the lower threshold for the analog watchdog.
Refer to Section 13.7: Analog window watchdog on page 254.
Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no
conversion is ongoing).
13.11.8 ADC channel selection register (ADC_CHSELR)
Address offset: 0x28
Reset value: 0x0000 0000
272/1017 RM0091 Rev 10 1S7]

RMO0091 Analog-to-digital converter (ADC)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CHSEL | CHSEL | CHSEL
18 17 16
w w w
15 14 13 12 7 10 9 8 7 6 5 4 3 2 1 0
CHSEL | CHSEL | CHSEL | CHSEL | CHSEL | CHSEL | CHSEL | CHSEL | CHSEL | CHSEL | CHSEL | CHSEL | CHSEL | CHSEL | CHSEL | CHSEL
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
w w rw rw rw rw rw rw w w w w w w w w

Bits 31:19 Reserved, must be kept at reset value.

Bits 18:0 CHSELX: Channel-x selection

These bits are written by software and define which channels are part of the sequence of channels
to be converted.
0: Input Channel-x is not selected for conversion
1: Input Channel-x is selected for conversion
Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no
conversion is ongoing).

13.11.9 ADC data register (ADC_DR)
Address offset: 0x40
Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
DATA[15:0]
r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 DATA[15:0]: Converted data

3

These bits are read-only. They contain the conversion result from the last converted channel. The data
are left- or right-aligned as shown in Figure 37: Data alignment and resolution on page 249.

Just after a calibration is complete, DATA[6:0] contains the calibration factor.

RMO0091 Rev 10 273/1017

Analog-to-digital converter (ADC)

RM0091

13.11.10 ADC common configuration register (ADC_CCR)

Address offset: 0x308
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
VBAT VREF
Res. EN TSEN EN
wo | ow | ow | | |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Bits 31:25 Reserved, must be kept at reset value.

Bit 24 VBATEN: Vgt enable
This bit is set and cleared by software to enable/disable the Vg channel.

0: Vgat channel disabled
1: Vgat channel enabled

Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no

conversion is ongoing)

Bit 23 TSEN: Temperature sensor enable
This bit is set and cleared by software to enable/disable the temperature sensor.

0: Temperature sensor disabled
1: Temperature sensor enabled

Note: Software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion

is ongoing).
Bit 22 VREFEN: VREFlNT enable

This bit is set and cleared by software to enable/disable the VrggnT-

0: VREFINT disabled
1: VREFINT enabled

Note: Software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion

is ongoing).

Bits 21:0 Reserved, must be kept at reset value.

13.12 ADC register map

The following table summarizes the ADC registers.

Table 50. ADC register map and reset values

i —|o|lo|oNlO vt N~ oo~ it olN =)
Offset| Register TIQ|QIQIN|&|Q|I|QNIR22 = QR I2Y = 2|o|w|~|0jw|¢|m |0
[a) x 0%5
. 5 | w 0
ADC_ISR AR R R A R A A R A A R A A R R R R A A R A R e R s R A 4
0x00 n:n:ucn:ucn:n:n:n:n:n:n:ucn:n:mn:n:n:n:nﬁn:ucn:<n:n:o|.u|_uo<o(
Ll
Reset value 0 0o|0f0f0]|O
wjw
. wi oW Wy |3
ADC_IER AR R A R A A R A A R A A R A R R A A A S R A R R R A)
0x04 ¥l ||| ||| ||| || || || ||| ||| |2 || |29 |0 |0 |x
< O |uw (w |0 |a
w|<
Reset value 0 o|o0f0f0]|O

274/1017 RMO0091 Rev 10

3

RMO0091 Analog-to-digital converter (ADC)
Table 50. ADC register map and reset values (continued)
Offset| Register |TIQIRQINISIQIIIKQNTK2R=|C|L|I 2N C|IQ|o|w|~|o|v|tm v~
2|, R .E@z
ADC_CR 08888%%8%8%%8%88m%‘”‘"%%%%%%%:f)%fﬁog
0x08 20:0:0:0:0:0:D:D:DSD:D:ID:D:ID:D:ID:ID:IDSD:DSDCE(I%Q):(
<
Reset value 0 0 0(0]|0
| [a)] 5 X |o®
Z |0 ZLu_L [=ge) = pd 5 IL |2
| = = =]
ADC_CFGR1 AWDCHI[4:0] 8|2 olRIZBIZ] & EXT.SEL o RI.ES z|Q <
0x0C = 2528 Y o] |Z| 1o X|2|E
EE SR ES 3| o B |°
Reset value olofloJoTlo olo ofofofofofofo o|0|000|0000
=)
g
ADC_CFGR2 | O
0x10 - o
=
X
O
Reset value 0|0
M
oxia ADC_SMPR 2:0]
Reset value 0|O|O
Ox18
0x1C
ADC_TR HT[11:0] LT[11:0]
0x20
Reset value IR EREE oJoJoJoJoJoJoJoJoJoJoJo
0x24
CSEEEERPEEEEIERNEMIIRINISIS
ADC_CHSELR o oo ol e e e R oA
0x28 e e e e L e K el el sl el =l ol el el e
Slclolclololclolslololojo|jo|o|o oo |o
Reset value o(o|jofo|ofo|O|O|O|O|O|O|OfO|O|O]|O|O|O
0x2C
0x30
0x34
0x38
0x3C
ADC_DR DATA[15:0]
0x40
Reset value oJoJoJoJoJoJoJoJoJoJoJoJoJoJoJo
P4 P4
ADC_CCR B &
0x308 - 5@
> >
Reset value 0|0f0

Refer to Section 2.2 on page 46 for the register boundary addresses.

3

RMO0091 Rev 10

275/1017

Digital-to-analog converter (DAC) RMO0091

14 Digital-to-analog converter (DAC)

This section applies to STM32F05x, STM32F07x and STM32F09x devices only. The
second DAC channel (DAC_OUT2) and some other features are available only on
STM32F07x and STM32F09x devices.

14.1 Introduction

The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be
configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In
12-bit mode, the data could be left- or right-aligned. An input reference voltage, Vppa
(shared with ADC), is available. The output can optionally be buffered for higher current
drive.

14.2 DAC main features

The devices integrate one 12-bit DAC channel DAC_OUT1. A second channel DAC_OUT2
is available on STM32F07x and STM32F09x devices.

DAC main features are the following:

e Left or right data alignment in 12-bit mode

e Synchronized update capability

e Noise-wave generation (STM32F07x and STM32F09x devices)

e Triangular-wave generation (STM32F07x and STM32F09x devices)
e Independent or simultaneous conversions (dual mode only)

e DMA capability

e DMA underrun error detection

e External triggers for conversion

e Programmable internal buffer

e Input voltage reference, Vppa

Figure 48 shows the block diagram of a DAC channel and Table 51 gives the pin
description.

3

276/1017 RMO0091 Rev 10

RM0091

Digital-to-analog converter (DAC)

Note:

14.3

3

Figure 48. DAC block diagram

DAC control register
TSELX2:0] bits T
SWTRIGx —]
TIM6_TRGO —2 DMAENx
TIM3_TRGO —2
TIM15_TRGO—{+
TIM2_TRGO —8
EXTI9 [] =
A y
DM A requestx
>
12-bit TENx
- Control logic
12-bit BOFF
DORx
T 12-bit
Z
Vooa []
Digital-to-analog :lDAC_OUT
converterx
Vssa
MS19883V3
Table 51. DAC pins
Name Signal type Remarks
Vppa Input, analog supply Analog power supply
Vssa Input, analog supply ground Ground for analog power supply
DAC_OUT Analog output signal DAC channelx analog output

Once DAC_Channelx is enabled, the corresponding GPIO pin (PA4 or PA5) is automatically
connected to the analog converter output (DAC_OUTXx). In order to avoid parasitic
consumption, the PA4 or PA5 pin should first be configured to analog (AIN).

DAC output buffer enable

The DAC integrates one output buffer that can be used to reduce the output impedance and
to drive external loads directly without having to add an external operational amplifier.

The DAC channel output buffers can be enabled and disabled through the corresponding
BOFFx bit in the DAC_CR register.

RMO0091 Rev 10

277/1017

Digital-to-analog converter (DAC) RMO0091

14.4

Note:

14.5

14.5.1

14.5.2

278/1017

DAC channel enable

Each DAC channel can be powered on by setting the corresponding ENXx bit in the DAC_CR
register. Each DAC channel is then enabled after a startup time tyakeup-

The ENx bit enables the analog DAC Channelx macrocell only. The DAC Channelx digital
interface is enabled even if the ENx bit is reset.

Single mode functional description

DAC data format

There are three possibilities:

e 8-bit right alignment: the software has to load data into the DAC_DHR8RXx [7:0] bits
(stored into the DHRx[11:4] bits)

e 12-bit left alignment: the software has to load data into the DAC_DHR12Lx [15:4] bits
(stored into the DHRx[11:0] bits)

e 12-bit right alignment: the software has to load data into the DAC_DHR12Rx [11:0] bits
(stored into the DHRx[11:0] bits)

Depending on the loaded DAC_DHRYyyyx register, the data written by the user is shifted and
stored into the corresponding DHRx (data holding registerx, which are internal non-memory-
mapped registers). The DHRXx register is then loaded into the DORX register either
automatically, by software trigger or by an external event trigger.

Figure 49. Data registers in single DAC channel mode

31 24 15 7 0

8-bit right aligned

12-bit left aligned

12-bit right aligned

ai14710b

DAC channel conversion

The DAC_DORX cannot be written directly and any data transfer to the DAC channelx must
be performed by loading the DAC_DHRXx register (write to DAC_DHR8Rx, DAC_DHR12Lx,
DAC_DHR12RXx).

Data stored in the DAC_DHRXx register are automatically transferred to the DAC_DORX
register after one APB clock cycle, if no hardware trigger is selected (TENx bit in DAC_CR
register is reset). However, when a hardware trigger is selected (TENXx bit in DAC_CR
register is set) and a trigger occurs, the transfer is performed three PCLK clock cycles later.

When DAC_DORXx is loaded with the DAC_DHRXx contents, the analog output voltage
becomes available after a time tge17 NG that depends on the power supply voltage and the
analog output load.

3

RMO0091 Rev 10

RM0091

Digital-to-analog converter (DAC)

14.5.3

3

Figure 50. Timing diagram for conversion with trigger disabled TEN = 0

APB1_CLK|||||||||||||||

DHR |0x1AC)|

1
1
T Output voltage
DOR : Ox1AC |_—" available on DAC_OUT pin
1

le——ISETTLING — ai14711b

Independent trigger with single LFSR generation

To configure the DAC in this conversion mode (see Section 14.7: Noise
generation(STM32F07x and STM32F09x devices)), the following sequence is required:

1. Set the DAC channel trigger enable bit TENx.
2. Configure the trigger source by setting TSELx[2:0] bits.

3. Configure the DAC channel WAVEX[1:0] bits as “01” and the same LFSR mask value in
the MAMPx[3:0] bits

4. Load the DAC channel data into the desired DAC_DHRX register (DHR12RD,
DHR12LD or DHR8RD).

When a DAC channelx trigger arrives, the LFSRx counter, with the same mask, is added to
the DHRXx register and the sum is transferred into DAC_DORXx (three APB clock cycles
later). Then the LFSRx counter is updated.

Independent trigger with single triangle generation

To configure the DAC in this conversion mode (see Section 14.8: Triangle-wave generation

(STM32F07x and STM32F09x devices)), the following sequence is required:

1. Set the DAC channelx trigger enable TENXx bits.

2. Configure the trigger source by setting TSELx[2:0] bits.

3. Configure the DAC channelx WAVEX[1:0] bits as “1x” and the same maximum
amplitude value in the MAMPX[3:0] bits

4. Load the DAC channelx data into the desired DAC_DHRX register. (DHR12RD,
DHR12LD or DHR8RD).

When a DAC channelx trigger arrives, the DAC channelx triangle counter, with the same
triangle amplitude, is added to the DHRXx register and the sum is transferred into
DAC_DORX (three APB clock cycles later). The DAC channelx triangle counter is then
updated.

DAC output voltage

Digital inputs are converted to output voltages on a linear conversion between 0 and Vppa.

The analog output voltages on each DAC channel pin are determined by the following
equation:
DOR

DACoutput = Vppp X 2096

RMO0091 Rev 10 279/1017

Digital-to-analog converter (DAC) RMO0091

14.5.4

Note:

14.6

14.6.1

280/1017

DAC trigger selection

If the TENXx control bit is set, conversion can then be triggered by an external event (timer
counter, external interrupt line). The TSELXx[2:0] control bits determine which possible
events will trigger conversion as shown in Table 52.

Table 52. External triggers

Source Type TSEL[2:0]
TIM6_TRGO event 000
TIM3_TRGO event 001
TIM7_TRGO event Internal signal from on-chip 010
TIM15_TRGO event timers 011
TIM2_TRGO event 100
Reserved 101
EXTI line9 External pin 110
SWTRIG Software control bit 1M

Each time a DAC interface detects a rising edge on the selected timer TRGO output, or on
the selected external interrupt line 9, the last data stored into the DAC_DHRX register are
transferred into the DAC_DORX register. The DAC_DORX register is updated three APB
cycles after the trigger occurs.

If the software trigger is selected, the conversion starts once the SWTRIG bit is set.
SWTRIG is reset by hardware once the DAC_DORX register has been loaded with the
DAC_DHRXx register contents.

TSELx[2:0] bit cannot be changed when the ENXx bit is set. When software trigger is
selected, the transfer from the DAC_DHRXx register to the DAC_DORX register takes only
one APB clock cycle.

Dual-mode functional description (STM32F07x and
STM32F09x devices)

DAC data format

In Dual DAC channel mode, there are three possibilities:

e 8-bit right alignment: data for DAC channel1 to be loaded in the DAC_DHRS8RD [7:0]
bits (stored in the DHR1[11:4] bits) and data for DAC channel2 to be loaded in the
DAC_DHRS8RD [15:8] bits (stored in the DHR2[11:4] bits)

e 12-bit left alignment: data for DAC channel1 to be loaded into the DAC_DHR12LD
[15:4] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be loaded
into the DAC_DHR12LD [31:20] bits (stored in the DHR2[11:0] bits)

e 12-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR12RD
[11:0] bits (stored in the DHR1[11:0] bits) and data for DAC channel2 to be loaded into
the DAC_DHR12LD [27:16] bits (stored in the DHR2[11:0] bits)

RMO0091 Rev 10 ‘Yl

RM0091

Digital-to-analog converter (DAC)

14.6.2

14.6.3

3

Depending on the loaded DAC_DHRYyyyD register, the data written by the user is shifted
and stored in DHR1 and DHR2 (data holding registers, which are internal non-memory-
mapped registers). The DHR1 and DHR2 registers are then loaded into the DOR1 and
DOR?2 registers, respectively, either automatically, by software trigger or by an external
event trigger.

Figure 51. Data registers in dual DAC channel mode

31 24 15 7 0

8-bit right aligned

12-bit left aligned

12-bit right aligned

ai14709b

DAC channel conversion in dual mode

The DAC channel conversion in dual mode is performed in the same way as in single mode
(refer to Section 14.5.2) except that the data have to be loaded by writing to DAC_DHR8RX,
DAC_DHR12Lx, DAC_DHR12Rx, DAC_DHRS8RD, DAC_DHR12LD or DAC_DHR12RD.

Description of dual conversion modes

To efficiently use the bus bandwidth in applications that require the two DAC channels at the
same time, three dual registers are implemented: DHR8RD, DHR12RD and DHR12LD. A
unique register access is then required to drive both DAC channels at the same time.

Eleven conversion modes are possible using the two DAC channels and these dual
registers. All the conversion modes can nevertheless be obtained using separate DHRx
registers if needed.

All modes are described in the paragraphs below.

Refer to Section 14.5.2: DAC channel conversion for details on the APB bus (APB or APB1)
that clocks the DAC conversions.

Independent trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

1. Set the two DAC channel trigger enable bits TEN1 and TEN2

2. Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

3. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHRB8RD)

When a DAC channel1 trigger arrives, the DHR1 register is transferred into DAC_DOR1
(three APB clock cycles later).

When a DAC channel?2 trigger arrives, the DHR2 register is transferred into DAC_DOR?2
(three APB clock cycles later).

For code example refer to the Appendix section A.8.1: Independent trigger without wave
generation code example

RMO0091 Rev 10 281/1017

Digital-to-analog converter (DAC) RMO0091

282/1017

Independent trigger with single LFSR generation

To configure the DAC in this conversion mode (refer to Section 14.7: Noise

generation(STM32F07x and STM32F09x devices)), the following sequence is required:

1. Set the two DAC channel trigger enable bits TEN1 and TEN2

2. Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSELZ2[2:0] bits

3. Configure the two DAC channel WAVEXx[1:0] bits as “01” and the same LFSR mask
value in the MAMPX[3:0] bits

4. Load the dual DAC channel data into the desired DHR register (DHR12RD, DHR12LD
or DHR8RD)

For code example refer to the Appendix section A.8.2: Independent trigger with single LFSR
generation code example

When a DAC channel1 trigger arrives, the LFSR1 counter, with the same mask, is added to
the DHR1 register and the sum is transferred into DAC_DOR1 (three APB clock cycles
later). Then the LFSR1 counter is updated.

When a DAC channel2 trigger arrives, the LFSR2 counter, with the same mask, is added to
the DHR2 register and the sum is transferred into DAC_DOR?2 (three APB clock cycles
later). Then the LFSR2 counter is updated.

Independent trigger with different LFSR generation

To configure the DAC in this conversion mode (refer to Section 14.7: Noise

generation(STM32F07x and STM32F09x devices)), the following sequence is required:

1. Set the two DAC channel trigger enable bits TEN1 and TEN2

2. Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSELZ2[2:0] bits

3. Configure the two DAC channel WAVEX[1:0] bits as “01” and set different LFSR masks
values in the MAMP1[3:0] and MAMP2[3:0] bits

4. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHRB8RD)

For code example refer to the Appendix section A.8.3: Independent trigger with different
LFSR generation code example.

When a DAC channel1 trigger arrives, the LFSR1 counter, with the mask configured by
MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1
(three APB clock cycles later). Then the LFSR1 counter is updated.

When a DAC channel2 trigger arrives, the LFSR2 counter, with the mask configured by
MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB clock cycles later). Then the LFSR2 counter is updated.

Independent trigger with single triangle generation

To configure the DAC in this conversion mode (refer to Section 14.8: Triangle-wave
generation (STM32F07x and STM32F09x devices)), the following sequence is required:

3

RMO0091 Rev 10

RMO0091 Digital-to-analog converter (DAC)

Set the DAC channelx trigger enable TENXx bits.
2. Configure different trigger sources by setting different values in the TSELx[2:0] bits

3. Configure the DAC channelx WAVEXx[1:0] bits as “1x” and the same maximum
amplitude value in the MAMPXx[3:0] bits

4. Load the DAC channelx data into the desired DAC_DHRX register.

For code example refer to the Appendix section A.8.4: Independent trigger with single
triangle generation code example.

Refer to Section 14.5.2: DAC channel conversion for details on the APB bus (APB or APB1)
that clocks the DAC conversions.

When a DAC channelx trigger arrives, the DAC channelx triangle counter, with the same
triangle amplitude, is added to the DHRXx register and the sum is transferred into
DAC_DORXx (three APB clock cycles later). The DAC channelx triangle counter is then
updated.

Independent trigger with different triangle generation

To configure the DAC in this conversion mode (refer to Section 14.8: Triangle-wave
generation (STM32F07x and STM32F09x devices)), the following sequence is required:
1. Set the DAC channelx trigger enable TENX bits.

2. Configure different trigger sources by setting different values in the TSELx[2:0] bits

3. Configure the DAC channelx WAVEXx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMPx[3:0] bits

4. Load the DAC channelx data into the desired DAC_DHRX register.

For code example refer to the Appendix section A.8.5: Independent trigger with different
triangle generation code example.

When a DAC channelx trigger arrives, the DAC channelx triangle counter, with a triangle
amplitude configured by MAMPXx[3:0], is added to the DHRXx register and the sum is
transferred into DAC_DORX (three APB clock cycles later). The DAC channelx triangle
counter is then updated.

Simultaneous software start

To configure the DAC in this conversion mode, the following sequence is required:

1. Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHRB8RD)

In this configuration, one APB clock cycles).

For code example refer to the Appendix section A.8.6: Simultaneous software start code
example.

Simultaneous trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:
1. Set the two DAC channel trigger enable bits TEN1 and TEN2

2. Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSELZ2[2:0] bits

3. Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHRB8RD)

3

RMO0091 Rev 10 283/1017

Digital-to-analog converter (DAC) RMO0091

284/1017

When a trigger arrives, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and
DAC_DOR2, respectively (after three APB clock cycles).

For code example refer to the Appendix section A.8.7: Simultaneous trigger without wave
generation code example.

Simultaneous trigger with single LFSR generation

To configure the DAC in this conversion mode (refer to Section 14.7: Noise
generation(STM32F07x and STM32F09x devices)), the following sequence is required:

1. Set the two DAC channel trigger enable bits TEN1 and TEN2

2. Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSELZ2[2:0] bits

3. Configure the two DAC channel WAVEX[1:0] bits as “01” and the same LFSR mask
value in the MAMPXx[3:0] bits

4. Load the dual DAC channel data to the desired DHR register (DHR12RD, DHR12LD or
DHR8RD)

For code example refer to the Appendix section A.8.8: Simultaneous trigger with single
LFSR generation code example.

When a trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1
register and the sum is transferred into DAC_DOR1 (three APB clock cycles later). The
LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the same mask,
is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB clock
cycles later). The LFSR2 counter is then updated.

Simultaneous trigger with different LFSR generation

To configure the DAC in this conversion mode (refer to Section 14.7: Noise
generation(STM32F07x and STM32F09x devices)), the following sequence is required:
1. Set the two DAC channel trigger enable bits TEN1 and TEN2

2. Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSELZ2[2:0] bits

3. Configure the two DAC channel WAVEX[1:0] bits as “01” and set different LFSR mask
values using the MAMP1[3:0] and MAMP2[3:0] bits

4. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHRS8RD)

For code example refer to the Appendix section A.8.9: Simultaneous trigger with different
LFSR generation code example.

When a trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is
added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB clock
cycles later). The LFSR1 counter is then updated.

At the same time, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to
the DHR2 register and the sum is transferred into DAC_DOR?2 (three APB clock cycles
later). The LFSR2 counter is then updated.

Simultaneous trigger with single triangle generation

To configure the DAC in this conversion mode (refer to Section 14.8: Triangle-wave
generation (STM32F07x and STM32F09x devices)), the following sequence is required:

RMO0091 Rev 10 ‘Yl

RM0091

Digital-to-analog converter (DAC)

14.6.4

3

Set the DAC channelx trigger enable TEN1x bits.

2. Configure the same trigger source for both DAC channels by setting the same value in
the TSELx[2:0] bits.

3. Configure the DAC channelx WAVEXx[1:0] bits as “1x” and the same maximum
amplitude value using the MAMPXx[3:0] bits

4. Load the DAC channelx data into the desired DAC_DHRX registers.

For code example refer to the Appendix section A.8.10: Simultaneous trigger with single
triangle generation code example.

When a trigger arrives, the DAC channelx triangle counter, with the same triangle amplitude,
is added to the DHRXx register and the sum is transferred into DAC_DORX (three APB clock
cycles later). The DAC channelx triangle counter is then updated.

Simultaneous trigger with different triangle generation

To configure the DAC in this conversion mode ‘refer to Section 14.8: Triangle-wave
generation (STM32F07x and STM32F09x devices)), the following sequence is required:
1. Set the DAC channelx trigger enable TENXx bits.

2. Configure the same trigger source for DAC channelx by setting the same value in the
TSELX[2:0] bits

3. Configure the DAC channelx WAVEXx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMPXx[3:0] bits.

4. Load the DAC channelx data into the desired DAC_DHRX registers.

For code example refer to the Appendix section A.8.71: Simultaneous trigger with different
triangle generation code example.

When a trigger arrives, the DAC channelx triangle counter, with a triangle amplitude
configured by MAMPXx[3:0], is added to the DHRXx register and the sum is transferred into
DAC_DORXx (three APB clock cycles later). Then the DAC channelx triangle counter is
updated.

DAC output voltage

Refer to Section 14.5.3: DAC output voltage.

RMO0091 Rev 10 285/1017

Digital-to-analog converter (DAC) RMO0091

14.6.5 DAC trigger selection
Refer to Section 14.5.4: DAC trigger selection

14.7 Noise generation(STM32F07x and STM32F09x devices)

In order to generate a variable-amplitude pseudonoise, an LFSR (linear feedback shift
register) is available. DAC noise generation is selected by setting WAVEXx[1:0] to “01”. The
preloaded value in LFSR is OXAAA. This register is updated three APB clock cycles after
each trigger event, following a specific calculation algorithm.

Figure 52. DAC LFSR register calculation algorithm

ai14713c

The LFSR value, that may be masked partially or totally by means of the MAMPXx[3:0] bits in
the DAC_CR register, is added up to the DAC_DHRXx contents without overflow and this
value is then stored into the DAC_DORX register.

If LFSR is 0x0000, a ‘1 is injected into it (antilock-up mechanism).
It is possible to reset LFSR wave generation by resetting the WAVEXx[1:0] bits.

Figure 53. DAC conversion (SW trigger enabled) with LFSR wave generation

APB1_CLK||||||||||I|||||||||||||||||||||||||||

1 1
1 1
1 1
DHR x 0x00 : \
' : :
L L

DOR

x OxAAA

SWTRIG |

x 0xD55

ai14714b

Note: The DAC trigger must be enabled for noise generation by setting the TENXx bit in the
DAC_CR register.

3

286/1017 RMO0091 Rev 10

RM0091

Digital-to-analog converter (DAC)

14.8

Note:

3

Triangle-wave generation (STM32F07x and STM32F09x
devices)

It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal.
DAC triangle-wave generation is selected by setting WAVEX[1:0] to “10”. The amplitude is
configured through the MAMPXx[3:0] bits in the DAC_CR register. An internal triangle counter
is incremented three APB clock cycles after each trigger event. The value of this counter is
then added to the DAC_DHRXx register without overflow and the sum is stored into the
DAC_DORX register. The triangle counter is incremented as long as it is less than the
maximum amplitude defined by the MAMPXx[3:0] bits. Once the configured amplitude is
reached, the counter is decremented down to 0, then incremented again and so on.

It is possible to reset triangle wave generation by resetting the WAVEX[1:0] bits.

Figure 54. DAC triangle wave generation

MAMPX[3:0] max amplitude
+ DAC_DHRXx base value

DAC_DHRXx base value

\

ai14715¢

Figure 55. DAC conversion (SW trigger enabled) with triangle wave generation
APB1_CLK||||||||||I|||||||||||||||||||||||||||

1
:
DHR XOXABE

DOR

x 0XACO

1
1
1
T
1
1
:
X OXABF
1
1

SWTRIG

ai14716b

The DAC trigger must be enabled for triangle generation by setting the TENX bit in the
DAC_CR register.

The MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot
be changed.

RMO0091 Rev 10 287/1017

Digital-to-analog converter (DAC) RMO0091

14.9

288/1017

DMA request

Each DAC channel has a DMA capability. Two DMA channels are used to service DAC
channel DMA requests.

A DAC DMA request is generated when an external trigger (but not a software trigger)
occurs while the DMAENX bit is set. The value of the DAC_DHRX register is then transferred
to the DAC_DORKX register.

In dual mode, if both DMAENX bits are set, two DMA requests are generated. If only one
DMA request is needed, user should set only the corresponding DMAENX bit. In this way,
the application can manage both DAC channels in dual mode by using one DMA request
and a unique DMA channel.

For code example refer to the Appendix section A.8.712: DMA initialization code example.

DMA underrun

The DAC DMA request is not queued so that if a second external trigger arrives before the
acknowledgment for the first external trigger is received (first request), then no new request
is issued and the DMA channelx underrun flag DMAUDRX in the DAC_SR register is set,
reporting the error condition. DMA data transfers are then disabled and no further DMA
request is treated. The DAC channelx continues to convert old data.

The software should clear the DMAUDRX flag by writing “1”, clear the DMAEN bit of the
used DMA stream and re-initialize both DMA and DAC channelx to restart the transfer
correctly. The software should modify the DAC trigger conversion frequency or lighten the
DMA workload to avoid a new DMA. Finally, the DAC conversion can be resumed by
enabling both DMA data transfer and conversion trigger.

For each DAC channel, an interrupt is also generated if the corresponding DMAUDRIEX bit
in the DAC_CR register is enabled.

3

RMO0091 Rev 10

RM0091

Digital-to-analog converter (DAC)

1410 DAC registers

Refer to Section 1.2 on page 42 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

14.10.1 DAC control register (DAC_CR)

Address offset: 0x00
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DMAU | DMA)))
DRIE2 | EN2 MAMP2[3:0] WAVE2[1:0] TSEL2[2:0] TEN2 | BOFF2 | EN2
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
DMAU | DMA)))
bRIE1 | EN1 MAMP1[3:0] WAVE1[1:0] TSEL1[2:0] TEN1 | BOFF1 | EN1
Bits 31:30 Reserved, must be kept at reset value.
Bit 29 DMAUDRIE2: DAC channel2 DMA underrun interrupt enable
This bit is set and cleared by software.
0: DAC channel2 DMA underrun interrupt disabled
1: DAC channel2 DMA underrun interrupt enabled
Note: This bit is available in dual mode only. It is reserved in single mode.
Bit 28 DMAEN2: DAC channel2 DMA enable
This bit is set and cleared by software.
0: DAC channel2 DMA mode disabled
1: DAC channel2 DMA mode enabled
Note: This bit is available in dual mode only. It is reserved in single mode.
Bits 27:24 MAMP2[3:0]: DAC channel2 mask/amplitude selector

3

These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.

0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1

0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3

0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7

0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15

0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31

0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63

0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127

0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255

1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511

1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023

1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047

>1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095
Note: These bits are available only in dual mode when wave generation is supported.

Otherwise, they are reserved and must be kept at reset value.

RMO0091 Rev 10 289/1017

Digital-to-analog converter (DAC) RMO0091

Bits 23:22 WAVEZ2[1:0]: DAC channel2 noise/triangle wave generation enable
These bits are set/reset by software.
00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled
Note: Only used if bit TEN2 = 1 (DAC channel?2 trigger enabled)

These bits are available only in dual mode when wave generation is supported.
Otherwise, they are reserved and must be kept at reset value.

Bits 21:19 TSEL2[2:0]: DAC channel2 trigger selection

These bits select the external event used to trigger DAC channel2
000: Timer 6 TRGO event
001: Timer 3 TRGO event
010: Timer 7 TRGO event
011: Timer 15 TRGO event
100: Timer 2 TRGO event
101: Reserved
110: EXTl line9
111: Software trigger

Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled).

These bits are available in dual mode only. They are reserved in single mode.

Bit 18 TEN2: DAC channel?2 trigger enable
This bit is set and cleared by software to enable/disable DAC channel2 trigger

0: DAC channel?2 trigger disabled and data written into the DAC_DHRX register are
transferred one APBclock cycle later to the DAC_DOR?2 register

1: DAC channel2 trigger enabled and data from the DAC_DHRX register are transferred
three APB clock cycles later to the DAC_DOR2 register

Note: When software trigger is selected, the transfer from the DAC_DHRX register to the
DAC_DOR?2 register takes only one APB clock cycle.

Note: This bit is available in dual mode only. It is reserved in single mode.

Bit 17 BOFF2: DAC channel2 output buffer disable
This bit is set and cleared by software to enable/disable DAC channel2 output buffer.

0: DAC channel2 output buffer enabled
1: DAC channel2 output buffer disabled

Note: This bit is available in dual mode only. It is reserved in single mode.

Bit 16 EN2: DAC channel2 enable
This bit is set and cleared by software to enable/disable DAC channel2.

0: DAC channel2 disabled
1: DAC channel2 enabled

Note: This bit is available in dual mode only. It is reserved in single mode.
Bits 15:14 Reserved, must be kept at reset value.

Bit 13 DMAUDRIE1: DAC channel1 DMA Underrun Interrupt enable
This bit is set and cleared by software.

0: DAC channel1 DMA Underrun Interrupt disabled
1: DAC channel1 DMA Underrun Interrupt enabled

3

290/1017 RMO0091 Rev 10

RMO0091 Digital-to-analog converter (DAC)

Bit 12 DMAEN1: DAC channel1 DMA enable
This bit is set and cleared by software.

0: DAC channel1 DMA mode disabled
1: DAC channel1 DMA mode enabled

Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector

These bits are written by software to select mask in wave generation mode or amplitude in

triangle generation mode.
0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
=2 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095

Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable
These bits are set and cleared by software.
00: Wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled
Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

Bits 5:3 TSEL1[2:0]: DAC channel1 trigger selection

These bits select the external event used to trigger DAC channel1.
000: Timer 6 TRGO event
001: Timer 3 TRGO event
010: Timer 7 TRGO event
011: Timer 15 TRGO event
100: Timer 2 TRGO event
101: Reserved
110: EXTl line9
111: Software trigger

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

3

RMO0091 Rev 10 291/1017

Digital-to-analog converter (DAC) RMO0091

Bit 2 TEN1: DAC channel1 trigger enable
This bit is set and cleared by software to enable/disable DAC channel1 trigger.

0: DAC channel1 trigger disabled and data written into the DAC_DHRX register are
transferred one APB clock cycle later to the DAC_DOR1 register

1: DAC channel1 trigger enabled and data from the DAC_DHRX register are transferred
three APB clock cycles later to the DAC_DORT1 register

Note: When software trigger is selected, the transfer from the DAC_DHRX register to the
DAC_DOR!1 register takes only one APB clock cycle.
Bit 1 BOFF1: DAC channel1 output buffer disable
This bit is set and cleared by software to enable/disable DAC channel1 output buffer.

0: DAC channel1 output buffer enabled
1: DAC channel1 output buffer disabled

Bit 0 EN1: DAC channel1 enable
This bit is set and cleared by software to enable/disable DAC channeli.

0: DAC channel1 disabled
1: DAC channel1 enabled

3

292/1017 RMO0091 Rev 10

RMO0091 Digital-to-analog converter (DAC)

14.10.2 DAC software trigger register (DAC_SWTRIGR)

Address offset: 0x04
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
SWTRIG2 | SWTRIG1
w w

Bits 31:2 Reserved, must be kept at reset value.

Bit 1 SWTRIG2: DAC channel2 software trigger
This bit is set and cleared by software to enable/disable the software trigger.

0: Software trigger disabled
1: Software trigger enabled
Note: This bit is cleared by hardware (one APB clock cycle later) once the DAC_DHR2
register value has been loaded into the DAC_DOR?2 register.

This bit is available in dual mode only. It is reserved in single mode.
Bit 0 SWTRIG1: DAC channel1 software trigger
This bit is set and cleared by software to enable/disable the software trigger.

0: Software trigger disabled
1: Software trigger enabled
Note: This bit is cleared by hardware (one APB clock cycle later) once the DAC_DHR1
register value has been loaded into the DAC_DORT1 register.

14.10.3 DAC channel1 12-bit right-aligned data holding register

(DAC_DHR12R1)

Address offset: 0x08
Reset value: 0x0000 0000

31 30 20 28 27 26 25 24 23 22 2 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DACC1DHR[11:0]

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data
These bits are written by software which specifies 12-bit data for DAC channel1.

3

RMO0091 Rev 10 293/1017

Digital-to-analog converter (DAC) RMO0091

14.10.4 DAC channel1 12-bit left-aligned data holding register
(DAC_DHR12L1)

Address offset: 0x0C
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
DACC1DHR[11:0] v
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data
These bits are written by software which specifies 12-bit data for DAC channel1.
Bits 3:0 Reserved, must be kept at reset value.
14.10.5 DAC channel1 8-bit right-aligned data holding register
(DAC_DHRS8R1)
Address offset: 0x10
Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
DACC1DHRI[7:0]

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data
These bits are written by software which specifies 8-bit data for DAC channel1.

14.10.6 DAC channel2 12-bit right-aligned data holding register
(DAC_DHR12R2)

Address offset: 0x14

Reset value: 0x0000 0000

27 26 25 24 23 22 21 20 19 18 17 16

31 30 29 28

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
DACC2DHR[11:0]

w | oo [ow [w [ow [ow [ow [ow [ow [ow [o]

w

S74

294/1017 RMO0091 Rev 10

RM0091

Digital-to-analog converter (DAC)

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel2.

14.10.7 DAC channel2 12-bit left-aligned data holding register
(DAC_DHR12L2)
Address offset: 0x18
Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
DACC2DHR[11:0]

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:4 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data

These bits are written by software which specify 12-bit data for DAC channel2.

Bits 3:0 Reserved, must be kept at reset value.

14.10.8 DAC channel2 8-bit right-aligned data holding register

(DAC_DHR8R2)

Address offset: 0x1C

Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

DACC2DHR([7:0]
Bits 31:8 Reserved, must be kept at reset value.
Bits 7:0 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data
These bits are written by software which specifies 8-bit data for DAC channel?2.
295/1017

3

RMO0091 Rev 10

Digital-to-analog converter (DAC) RMO0091

14.10.9 Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD)

Address offset: 0x20

Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DACC2DHR[11:0]

15 14 13 12 1 10 9 8 6 5 4 3 2 1 0

~

DACC1DHR[11:0]

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:16 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data
These bits are written by software which specifies 12-bit data for DAC channel?2.

Bits 15:12 Reserved, must be kept at reset value.

Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data
These bits are written by software which specifies 12-bit data for DAC channel.

14.10.10 Dual DAC 12-bit left-aligned data holding register
(DAC_DHR12LD)

Address offset: 0x24

Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DACC2DHR[11:0]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DACC1DHR[11:0]

Bits 31:20 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data
These bits are written by software which specifies 12-bit data for DAC channel2.

Bits 19:16 Reserved, must be kept at reset value.

Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data
These bits are written by software which specifies 12-bit data for DAC channel1.

Bits 3:0 Reserved, must be kept at reset value.

14.10.11 Dual DAC 8-bit right-aligned data holding register
(DAC_DHRB8RD)

Address offset: 0x28

Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

296/1017 RMO0091 Rev 10 ‘7]

RMO0091 Digital-to-analog converter (DAC)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DACC2DHR[7:0] DACC1DHR[7:0]

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:8 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data
These bits are written by software which specifies 8-bit data for DAC channel2.

Bits 7:0 DACC1DHR][7:0]: DAC channel1 8-bit right-aligned data
These bits are written by software which specifies 8-bit data for DAC channel1.

14.10.12 DAC channel1 data output register (DAC_DOR1)

Address offset: 0x2C
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
DACC1DOR[11:0]
r | r | r | r | r | r | r | r | r | r | r | r
Bits 31:12 Reserved, must be kept at reset value.
Bits 11:0 DACC1DOR[11:0]: DAC channel1 data output
These bits are read-only, they contain data output for DAC channel1.
14.10.13 DAC channel2 data output register (DAC_DORZ2)

Address offset: 0x30

Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

DACC2DOR[11:0]
r | r | r | r | r | r | r | r | r | r | r | r
Bits 31:12 Reserved, must be kept at reset value.
Bits 11:0 DACC2DOR[11:0]: DAC channel2 data output
These bits are read-only, they contain data output for DAC channel2.
14.10.14 DAC status register (DAC_SR)
Address offset: 0x34
Reset value: 0x0000 0000
Kys RM0091 Rev 10 297/1017

Digital-to-analog converter (DAC) RMO0091

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DMAUDR2

rc_w1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
DMAUDR1

rc_w1

Bits 31:30 Reserved, must be kept at reset value.

Bit 29 DMAUDR2: DAC channel2 DMA underrun flag. Available on STM32F07x and STM32F09x
devices.

This bit is set by hardware and cleared by software (by writing it to 1).

0: No DMA underrun error condition occurred for DAC channel2
1: DMA underrun error condition occurred for DAC channel2 (the currently selected trigger is
driving DAC channel2 conversion at a frequency higher than the DMA service capability rate)

Note: This bit is available in dual mode only. It is reserved in single mode.
Bits 28:14 Reserved, must be kept at reset value.

Bit 13 DMAUDR1: DAC channel1 DMA underrun flag
This bit is set by hardware and cleared by software (by writing it to 1).

0: No DMA underrun error condition occurred for DAC channel1
1: DMA underrun error condition occurred for DAC channel1 (the currently selected trigger is
driving DAC channel1 conversion at a frequency higher than the DMA service capability rate)

Bits 12:0 Reserved, must be kept at reset value.

3

298/1017 RMO0091 Rev 10

RMO0091 Digital-to-analog converter (DAC)

14.10.15 DAC register map

Table 53 summarizes the DAC registers.

Table 53. DAC register map and reset values

Register
Offset 9 N S I B N I R A B B B R R A S G I E E R A R R R
name
g o~ S =) o E — S} =) 1S)
T & 2 pa) SN Xl & o, pa & S| & <
DAC_CR < a w 9 L =z < o w i wl =z
0x00 2z 3 = no|H gy SE s o |Hg
3 = = - 3 s = F
Reset value of(ofofo|ojo|O|O|OfO|O|O]O]|O o|{o|ofofO0|lO]|JO|O|O|O]|O]|OfO]|O
AN v~
Q| O
DAC_ xl
E| E
0x04 SWTRIGR SRS
n| »
Reset value 0|0
DAC_ .
0x08 DHR12R1 DACC1DHR[11:0]
Reset value O‘O‘O‘O|O‘O‘O‘OOOOO
DAC_ .
0x0C DHRA2LA DACC1DHR[11:0]
Reset value o|jojojofofojo0|0OfoO I 0 ‘ 0 I 0
DAC_ .
ox10 DHR8RA DACC1DHR([7:0]
Reset value 0‘0‘0‘0‘0|0‘0|0
DAC_ .
oxid DHR12R2 DACC2DHR[11:0]
Reset value O‘O‘O‘O|O‘O‘O‘OOOOO
DAC_ .
ox18 DHR12L2 DACC2DHR[11:0]
Reset value o|jo0jojofofoj0|0OfoO I 0 ‘ 0 I 0
DAC_ .
oxiC DHR8R2 DACC2DHR([7:0]
Reset value 0‘0‘0‘0‘0|0‘0|0
DAC_ . .
0x20 DHR12RD DACC2DHR[11:0] DACC1DHR[11:0]
X.
Reset value 0‘0‘0‘0‘0‘0‘0‘00000 0‘0‘0‘0|0‘0‘0‘00000
DAC_ . .
DHRA2LD DACC2DHR[11:0] DACC1DHR[11:0]
0x24
Resetvalue [0 [0 |0|(0O|0O|O|O|O|0O|0O|O|O O|O|O|O|O‘O|0|O OIO‘OIO
DAC_ DACC2DHR([7:0] DACC1DHR([7:0]
0x28 DHR8RD : :
Reset value 00000‘0‘0‘0 0‘0‘0‘0‘0|0‘0|0
DAC_DOR1 DACC1DOR][11:0]
0x2C
Reset value 0‘0‘0‘0|0‘0‘0‘0‘0|0‘0|0
DAC_DOR2 DACC2DOR][11:0]
0x30
Reset value 0‘0‘0‘0|0‘0‘0‘0‘0|0‘0|0
Kys RM0091 Rev 10 299/1017

Digital-to-analog converter (DAC)

RM0091
Table 53. DAC register map (continued)and reset values (continued)
Register
Offset | Register | 51212 &N (& [Q|X|R (R[S |R| 2|2 =222 |2|8|F|2|o|=|~ 0w |+ |o|n|-|o
N ~
o he
DAC_SR g %
0x34 - g g
(=] o
Reset value 0 0

Refer to Section 2.2 on page 46 for the register boundary addresses.

300/1017 RMO0091 Rev 10

3

RM0091

Comparator (COMP)

15

15.1

15.2

3

Comparator (COMP)

This section applies to STM32F05x and STM32F07x and STM32F09x devices only.

Introduction

STM32F05x and STM32F07x and STM32F09x devices embed two general purpose
comparators COMP1 and COMP2,that can be used either as standalone devices (all
terminal are available on 1/Os) or combined with the timers.

The comparators can be used for a variety of functions including:

Wake-up from low-power mode triggered by an analog signal,
Analog signal conditioning,

Cycle-by-cycle current control loop when combined with the DAC and a PWM output
from a timer.

COMP main features

Rail-to-rail comparators

Each comparator has positive and configurable negative inputs used for flexible voltage
selection:

— 31/0 pins
- DAC

— Internal reference voltage and three submultiple values (1/4, 1/2, 3/4) provided by
scaler (buffered voltage divider)

Programmable hysteresis

Programmable speed / consumption

The outputs can be redirected to an I/O or to timer inputs for triggering:

— OCREF_CLR events (for cycle-by-cycle current control)

— Break events for fast PWM shutdowns

COMP1 and COMP2 comparators can be combined in a window comparator.

Each comparator has interrupt generation capability with wake-up from Sleep and Stop
modes (through the EXTI controller)

RMO0091 Rev 10 301/1017

Comparator (COMP) RMO0091

15.3

15.3.1

15.3.2

302/1017

COMP functional description

COMP block diagram

The block diagram of the comparators is shown in Figure 56: Comparator 1 and 2 block
diagrams.

Figure 56. Comparator 1 and 2 block diagrams

COMP1_OUT
O PAO /PA6 /PA11
COMP1_INP
PA1 I::l * Pa COMP interrupt request
COMP1 » (to EXTI
g} COMP1_INM T (T|M1 B)K1
PAO , - _
Polarit TIM1_OCref_clr
PAd (DAC_OUTT) se?eigoyn TIM1_IC1
PA5 (DAC_OUT2) O | TIM2 104
VREFINT — 4 —
AV, 1 TIM2_OCref_clr
4 VREFINT
4 VREEINT —] TIM3_IC1
Yo VREF|NT — T|M3_OCref_CIr
COMP2_OUT
— [0 PA7/PA2/PA12
PA3 COMP2_INP|;
Window COMP?2 ~ > COMP interrupt request
mode N (to EXTI)
PA2 O Polarity
PA4 (DAC_OUT1) O selection TIM1_BK1
PA5 (DAC_OUT2) O COMP2_INM TIM1_OCref_clr
VREFINT — TIM1_IC1
% VREFINT — —»4 TIM2_IC4
%VREFINT —_ TIM2_OCref_cIr
Y2 VREFINT ——| TIM3_IC1
TIM3_OCref_clr
MS19824V2

COMP pins and internal signals

The 1/Os used as comparators inputs must be configured in analog mode in the GPIOs
registers.

The comparator output can be connected to the I/Os using the alternate function channel
given in “Alternate function mapping” table in the datasheet.

The output can also be internally redirected to a variety of timer input for the